|
import os |
|
from PIL import Image |
|
from tqdm import tqdm |
|
import torch |
|
import torchvision.transforms as transforms |
|
|
|
|
|
def center_crop_images(input_folder, output_folder, crop_size=(512, 512)): |
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
|
|
|
|
crop_transform = transforms.CenterCrop(crop_size) |
|
|
|
|
|
image_files = [ |
|
f |
|
for f in os.listdir(input_folder) |
|
if f.endswith((".png", ".jpg", ".jpeg", ".bmp", ".gif")) |
|
] |
|
|
|
|
|
for image_file in tqdm(image_files, desc="Center cropping images"): |
|
img_path = os.path.join(input_folder, image_file) |
|
try: |
|
|
|
img = Image.open(img_path) |
|
|
|
|
|
img_cropped = crop_transform(img) |
|
|
|
|
|
img_cropped.save(os.path.join(output_folder, image_file)) |
|
|
|
except Exception as e: |
|
print(f"Error processing {img_path}: {e}") |
|
|
|
|
|
|
|
input_folder = "/cm/shared/ninhnq3/datasets/cyclegan-rain/testB" |
|
output_folder = input_folder |
|
center_crop_images(input_folder, output_folder) |
|
|