qaihm-bot commited on
Commit
5abd248
·
verified ·
1 Parent(s): 390336a

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +284 -0
README.md ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: mit
4
+ tags:
5
+ - foundation
6
+ - android
7
+ pipeline_tag: automatic-speech-recognition
8
+
9
+ ---
10
+
11
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/whisper_medium_en/web-assets/model_demo.png)
12
+
13
+ # Whisper-Medium-En: Optimized for Mobile Deployment
14
+ ## Automatic speech recognition (ASR) model for English transcription as well as translation
15
+
16
+
17
+ OpenAI’s Whisper ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a mean decoded length specified below.
18
+
19
+ This model is an implementation of Whisper-Medium-En found [here](https://github.com/openai/whisper/tree/main).
20
+
21
+
22
+ This repository provides scripts to run Whisper-Medium-En on Qualcomm® devices.
23
+ More details on model performance across various devices, can be found
24
+ [here](https://aihub.qualcomm.com/models/whisper_medium_en).
25
+
26
+
27
+ ### Model Details
28
+
29
+ - **Model Type:** Speech recognition
30
+ - **Model Stats:**
31
+ - Model checkpoint: medium.en
32
+ - Input resolution: 80x3000 (30 seconds audio)
33
+ - Mean decoded sequence length: 224 tokens
34
+ - Number of parameters: 769 M
35
+ - Model size (WhisperEncoder): 769 MB
36
+ - Model size (WhisperDecoder): 726 MB
37
+
38
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
+ |---|---|---|---|---|---|---|---|---|
40
+ | WhisperDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 38.334 ms | 160 - 167 MB | FP16 | NPU | [Whisper-Medium-En.so](https://huggingface.co/qualcomm/Whisper-Medium-En/blob/main/WhisperDecoder.so) |
41
+ | WhisperDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 30.874 ms | 161 - 178 MB | FP16 | NPU | [Whisper-Medium-En.so](https://huggingface.co/qualcomm/Whisper-Medium-En/blob/main/WhisperDecoder.so) |
42
+ | WhisperDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 30.408 ms | 141 - 544 MB | FP16 | NPU | Use Export Script |
43
+ | WhisperDecoder | SA7255P ADP | SA7255P | QNN | 212.509 ms | 154 - 163 MB | FP16 | NPU | Use Export Script |
44
+ | WhisperDecoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 38.11 ms | 162 - 165 MB | FP16 | NPU | Use Export Script |
45
+ | WhisperDecoder | SA8295P ADP | SA8295P | QNN | 39.889 ms | 160 - 170 MB | FP16 | NPU | Use Export Script |
46
+ | WhisperDecoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 38.703 ms | 162 - 165 MB | FP16 | NPU | Use Export Script |
47
+ | WhisperDecoder | SA8775P ADP | SA8775P | QNN | 40.488 ms | 161 - 169 MB | FP16 | NPU | Use Export Script |
48
+ | WhisperDecoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 212.509 ms | 154 - 163 MB | FP16 | NPU | Use Export Script |
49
+ | WhisperDecoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 38.285 ms | 162 - 165 MB | FP16 | NPU | Use Export Script |
50
+ | WhisperDecoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 40.488 ms | 161 - 169 MB | FP16 | NPU | Use Export Script |
51
+ | WhisperDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 33.066 ms | 162 - 162 MB | FP16 | NPU | Use Export Script |
52
+ | WhisperEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1812.235 ms | 1 - 8 MB | FP16 | NPU | [Whisper-Medium-En.so](https://huggingface.co/qualcomm/Whisper-Medium-En/blob/main/WhisperEncoder.so) |
53
+ | WhisperEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1342.833 ms | 1 - 17 MB | FP16 | NPU | [Whisper-Medium-En.so](https://huggingface.co/qualcomm/Whisper-Medium-En/blob/main/WhisperEncoder.so) |
54
+ | WhisperEncoder | SA7255P ADP | SA7255P | QNN | 9877.481 ms | 0 - 7 MB | FP16 | NPU | Use Export Script |
55
+ | WhisperEncoder | SA8295P ADP | SA8295P | QNN | 1808.045 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
56
+ | WhisperEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 1798.114 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
57
+ | WhisperEncoder | SA8775P ADP | SA8775P | QNN | 1678.664 ms | 0 - 7 MB | FP16 | NPU | Use Export Script |
58
+ | WhisperEncoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 9877.481 ms | 0 - 7 MB | FP16 | NPU | Use Export Script |
59
+ | WhisperEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1770.444 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
60
+ | WhisperEncoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 1678.664 ms | 0 - 7 MB | FP16 | NPU | Use Export Script |
61
+ | WhisperEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1356.093 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
62
+
63
+
64
+
65
+
66
+ ## Installation
67
+
68
+
69
+ Install the package via pip:
70
+ ```bash
71
+ pip install "qai-hub-models[whisper-medium-en]"
72
+ ```
73
+
74
+
75
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
76
+
77
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
78
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
79
+
80
+ With this API token, you can configure your client to run models on the cloud
81
+ hosted devices.
82
+ ```bash
83
+ qai-hub configure --api_token API_TOKEN
84
+ ```
85
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
86
+
87
+
88
+
89
+ ## Demo off target
90
+
91
+ The package contains a simple end-to-end demo that downloads pre-trained
92
+ weights and runs this model on a sample input.
93
+
94
+ ```bash
95
+ python -m qai_hub_models.models.whisper_medium_en.demo
96
+ ```
97
+
98
+ The above demo runs a reference implementation of pre-processing, model
99
+ inference, and post processing.
100
+
101
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
102
+ environment, please add the following to your cell (instead of the above).
103
+ ```
104
+ %run -m qai_hub_models.models.whisper_medium_en.demo
105
+ ```
106
+
107
+
108
+ ### Run model on a cloud-hosted device
109
+
110
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
111
+ device. This script does the following:
112
+ * Performance check on-device on a cloud-hosted device
113
+ * Downloads compiled assets that can be deployed on-device for Android.
114
+ * Accuracy check between PyTorch and on-device outputs.
115
+
116
+ ```bash
117
+ python -m qai_hub_models.models.whisper_medium_en.export
118
+ ```
119
+ ```
120
+ Profiling Results
121
+ ------------------------------------------------------------
122
+ WhisperDecoder
123
+ Device : Samsung Galaxy S23 (13)
124
+ Runtime : QNN
125
+ Estimated inference time (ms) : 38.3
126
+ Estimated peak memory usage (MB): [160, 167]
127
+ Total # Ops : 5747
128
+ Compute Unit(s) : NPU (5747 ops)
129
+
130
+ ------------------------------------------------------------
131
+ WhisperEncoder
132
+ Device : Samsung Galaxy S23 (13)
133
+ Runtime : QNN
134
+ Estimated inference time (ms) : 1812.2
135
+ Estimated peak memory usage (MB): [1, 8]
136
+ Total # Ops : 3213
137
+ Compute Unit(s) : NPU (3213 ops)
138
+ ```
139
+
140
+
141
+ ## How does this work?
142
+
143
+ This [export script](https://aihub.qualcomm.com/models/whisper_medium_en/qai_hub_models/models/Whisper-Medium-En/export.py)
144
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
145
+ on-device. Lets go through each step below in detail:
146
+
147
+ Step 1: **Compile model for on-device deployment**
148
+
149
+ To compile a PyTorch model for on-device deployment, we first trace the model
150
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
151
+
152
+ ```python
153
+ import torch
154
+
155
+ import qai_hub as hub
156
+ from qai_hub_models.models.whisper_medium_en import Model
157
+
158
+ # Load the model
159
+ model = Model.from_pretrained()
160
+ decoder_model = model.decoder
161
+ encoder_model = model.encoder
162
+
163
+ # Device
164
+ device = hub.Device("Samsung Galaxy S23")
165
+
166
+ # Trace model
167
+ decoder_input_shape = decoder_model.get_input_spec()
168
+ decoder_sample_inputs = decoder_model.sample_inputs()
169
+
170
+ traced_decoder_model = torch.jit.trace(decoder_model, [torch.tensor(data[0]) for _, data in decoder_sample_inputs.items()])
171
+
172
+ # Compile model on a specific device
173
+ decoder_compile_job = hub.submit_compile_job(
174
+ model=traced_decoder_model ,
175
+ device=device,
176
+ input_specs=decoder_model.get_input_spec(),
177
+ )
178
+
179
+ # Get target model to run on-device
180
+ decoder_target_model = decoder_compile_job.get_target_model()
181
+ # Trace model
182
+ encoder_input_shape = encoder_model.get_input_spec()
183
+ encoder_sample_inputs = encoder_model.sample_inputs()
184
+
185
+ traced_encoder_model = torch.jit.trace(encoder_model, [torch.tensor(data[0]) for _, data in encoder_sample_inputs.items()])
186
+
187
+ # Compile model on a specific device
188
+ encoder_compile_job = hub.submit_compile_job(
189
+ model=traced_encoder_model ,
190
+ device=device,
191
+ input_specs=encoder_model.get_input_spec(),
192
+ )
193
+
194
+ # Get target model to run on-device
195
+ encoder_target_model = encoder_compile_job.get_target_model()
196
+
197
+ ```
198
+
199
+
200
+ Step 2: **Performance profiling on cloud-hosted device**
201
+
202
+ After compiling models from step 1. Models can be profiled model on-device using the
203
+ `target_model`. Note that this scripts runs the model on a device automatically
204
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
205
+ provided job URL to view a variety of on-device performance metrics.
206
+ ```python
207
+ decoder_profile_job = hub.submit_profile_job(
208
+ model=decoder_target_model,
209
+ device=device,
210
+ )
211
+ encoder_profile_job = hub.submit_profile_job(
212
+ model=encoder_target_model,
213
+ device=device,
214
+ )
215
+
216
+ ```
217
+
218
+ Step 3: **Verify on-device accuracy**
219
+
220
+ To verify the accuracy of the model on-device, you can run on-device inference
221
+ on sample input data on the same cloud hosted device.
222
+ ```python
223
+ decoder_input_data = decoder_model.sample_inputs()
224
+ decoder_inference_job = hub.submit_inference_job(
225
+ model=decoder_target_model,
226
+ device=device,
227
+ inputs=decoder_input_data,
228
+ )
229
+ decoder_inference_job.download_output_data()
230
+ encoder_input_data = encoder_model.sample_inputs()
231
+ encoder_inference_job = hub.submit_inference_job(
232
+ model=encoder_target_model,
233
+ device=device,
234
+ inputs=encoder_input_data,
235
+ )
236
+ encoder_inference_job.download_output_data()
237
+
238
+ ```
239
+ With the output of the model, you can compute like PSNR, relative errors or
240
+ spot check the output with expected output.
241
+
242
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
243
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
244
+
245
+
246
+
247
+
248
+ ## Deploying compiled model to Android
249
+
250
+
251
+ The models can be deployed using multiple runtimes:
252
+ - TensorFlow Lite (`.tflite` export): [This
253
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
254
+ guide to deploy the .tflite model in an Android application.
255
+
256
+
257
+ - QNN (`.so` export ): This [sample
258
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
259
+ provides instructions on how to use the `.so` shared library in an Android application.
260
+
261
+
262
+ ## View on Qualcomm® AI Hub
263
+ Get more details on Whisper-Medium-En's performance across various devices [here](https://aihub.qualcomm.com/models/whisper_medium_en).
264
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
265
+
266
+
267
+ ## License
268
+ * The license for the original implementation of Whisper-Medium-En can be found
269
+ [here](https://github.com/openai/whisper/blob/main/LICENSE).
270
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
271
+
272
+
273
+
274
+ ## References
275
+ * [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf)
276
+ * [Source Model Implementation](https://github.com/openai/whisper/tree/main)
277
+
278
+
279
+
280
+ ## Community
281
+ * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
282
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
283
+
284
+