# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ----------------------------- Modification Notice ----------------------------- # This file was originally obtained from: # https://github.com/LLaVA-VL/LLaVA-NeXT/blob/376b0b1e57ffbbaf55ed8196b725a036b53472a5/llava/model/language_model/llava_llama.py # # Minor modification by Yusuke Kanebako on 2025-07-22: # - Added support for calling a custom model architecture: Qwen2-VL, Qwen2.5-VL. # # No changes were made to the original class or function logic for other models. from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig from torch.nn import CrossEntropyLoss # , LlamaModel, LlamaForCausalLM, GenerationConfig # from .modeling_llama import LlamaModel, LlamaForCausalLM from transformers import LlamaModel, LlamaForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.generation.utils import GenerateOutput from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM class LlavaConfig(LlamaConfig): model_type = "llava_llama" temperature: float = 0.0 # reset to 0.0, previously 0.9 for Vicuna max_new_tokens: int = 1024 do_sample: bool = False top_p: Optional[float] = None # rope_scaling: Optional[dict] = {} class LlavaLlamaModel(LlavaMetaModel, LlamaModel): config_class = LlavaConfig def __init__(self, config: LlamaConfig): super(LlavaLlamaModel, self).__init__(config) class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM): config_class = LlavaConfig def __init__(self, config): LlamaForCausalLM.__init__(self, config) # configure default generation settings config.model_type = "llava_llama" # config.rope_scaling = None self.model = LlavaLlamaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, image_sizes: Optional[List[List[int]]] = None, image_grid_thws: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, modalities: Optional[List[str]] = ["image"], dpo_forward: Optional[bool] = None, cache_position=None, ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: (input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, image_grid_thws, modalities, image_sizes) if dpo_forward: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) return logits, labels else: return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, image_sizes: Optional[torch.Tensor] = None, image_grid_thws: Optional[torch.LongTensor] = None, modalities: Optional[List[str]] = ["image"], **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: modalities = kwargs.pop("modalities", None) if "modalities" in kwargs and modalities is None else modalities position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if images is not None: (inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, image_grid_thws, modalities, image_sizes=image_sizes) else: inputs_embeds = self.get_model().embed_tokens(inputs) return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) image_sizes = kwargs.pop("image_sizes", None) inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs) if images is not None: inputs["images"] = images if image_sizes is not None: inputs["image_sizes"] = image_sizes return inputs AutoConfig.register("llava_llama", LlavaConfig) AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)