
Unset

Inference Providers
integration requirements 💟

We shipped https://huggingface.co/blog/inference-providers recently with an initial set of
partners, and it’s been quite successful so far. We’d love to have you on board next 🔥
This doc lists the integration requirements. Let us know if you need any help!

1. Play with the huggingface.js/inference client

What is a Task
Task API schema

2. Implement the Model Mapping API
Register a mapping item

Access control
Validation

Delete a mapping item
Update a mapping item
List the whole mapping

3. For billing, implement a Request-Cost HTTP trailer
What is a HTTP Trailer
In which unit is it defined

1.​ Play with the huggingface.js/inference client

Note: if you provide inference only for LLM/VLMs following the OpenAI API, you
can probably skip this section

The first step to understand the integration is to take a look at the JS inference client that lives
inside the huggingface.js repo:
https://github.com/huggingface/huggingface.js/tree/main/packages/inference

This is the client that powers our Inference widgets on model pages, and is the blueprint
implementation for other SDKs like Python’s huggingface_hub and other tools.

https://huggingface.co/blog/inference-providers
https://github.com/huggingface/huggingface.js/tree/main/packages/inference
https://github.com/huggingface/huggingface.js/tree/main/packages/inference

What is a Task
You will see that inference methods (textToImage, chatCompletion, etc) have names that closely
mirror the task names. task, also known as pipeline_tag in the HF ecosystem, is the type of
model (basically which types of inputs and outputs the model has), for instance “text-generation”
or “text-to-image”. It is indicated prominently on model pages, here:

The list of all possible tasks is https://huggingface.co/tasks and the list of method names is in
the README at https://github.com/huggingface/huggingface.js/tree/main/packages/inference

‘chatCompletion’ is an exception as it is not a pipeline_tag. It includes models with either
pipeline_tag=“text-generation” or pipeline_tag=“image-text-to-text” and tagged as
“conversational”.

Task API schema
We enforce an API schema for each task type, to make it easier for end users to use different
models.
To be compatible, the third-party API must adhere to the "standard" shape API we expect on HF
model pages for each pipeline task type.

This is not an issue for LLMs as everyone converged on the OpenAI API anyways, but can be
more tricky for other tasks like "text-to-image" or "automatic-speech-recognition" where there
exists no standard API.​
​
For ex: you can find the expected schema for Text to Speech here:
https://github.com/huggingface/huggingface.js/blob/0a690a14d52041a872dc103846225603599f
4a33/packages/tasks/src/tasks/text-to-speech/spec/input.json#L4 (and similarly for other
supported tasks)

https://huggingface.co/tasks
https://github.com/huggingface/huggingface.js/tree/main/packages/inference
https://github.com/huggingface/huggingface.js/blob/0a690a14d52041a872dc103846225603599f4a33/packages/tasks/src/tasks/text-to-speech/spec/input.json#L4
https://github.com/huggingface/huggingface.js/blob/0a690a14d52041a872dc103846225603599f4a33/packages/tasks/src/tasks/text-to-speech/spec/input.json#L4

Unset

JavaScript

If your API for a given task is different from HF’s, it is not an issue: you can tweak the code in
huggingface.js to be able to call your models, ie. provide some kind of “translation” of parameter
names and output names.

Run the JS code and add some tests to make sure it works well. We can help with this step!

2.​ Implement the Model Mapping API
Once you’ve verified the huggingface.js/inference client can call your models successfully, you
can use our Model Mapping API.

This API lets a Partner "register" that they support model X, Y or Z on HF.

This enables:

●​ the inference widget on corresponding model pages,
●​ inference compatibility throughout the HF ecosystem (Python and JS client SDKs for

instance), and any downstream tool or library.

It replaces the initial hardcoded mappings in huggingface.js: for instance
https://github.com/huggingface/huggingface.js/blob/e288dbe23c89962dae38a2d7caee5c4fd5a7
1e4e/packages/inference/src/providers/together.ts

Register a mapping item

POST /api/partners/{provider}/models

Create a new mapping item, with the following body (JSON-encoded):

{
​ task: WidgetType, // required
​ hfModel?: string, // required in most cases, see hfFilter below for
exception
​ hfFilter?: string[], // (both can't be defined at the same time)
​ // ^Power user move: register a "tag" slice of HF in one go.
​ // Example: tag == "base_model:adapter:black-forest-labs/FLUX.1-dev" for
all Flux-dev LoRAs

https://github.com/huggingface/huggingface.js/blob/main/packages/inference/test/HfInference.spec.ts
https://github.com/huggingface/huggingface.js/blob/e288dbe23c89962dae38a2d7caee5c4fd5a71e4e/packages/inference/src/providers/together.ts
https://github.com/huggingface/huggingface.js/blob/e288dbe23c89962dae38a2d7caee5c4fd5a71e4e/packages/inference/src/providers/together.ts

Unset

​
​ providerModel: string // required: the partner's "model id" i.e. id on
your side
}

task, also known as pipeline_tag in the HF ecosystem, is the type of model / type of API
(examples: text-to-image, text-generation, but use conversational for chat models)
hfModel is the model id on the Hub’s side
providerModel is the model id on your side (can be the same or different).

Access control
You need to be in the {provider} Hub organization (e.g. https://huggingface.co/togethercomputer
for TogetherAI) with Write permissions to be able to access this endpoint.

Validation
The endpoints validates that:

-​ hfModel is indeed of pipeline_tag == task OR task is “conversational” and the model is
compatible.

-​ hfFilter, if specified, has some additional safeguard validation
-​ (in the future) we auto-test that the Partner’s API successfully responds to a

huggingface.js/inference call of the corresponding task i.e. the API shape is valid

Delete a mapping item

DELETE /api/partners/{provider}/models
{ hfModel: "" }
or
{ hfFilter: "" }
or even‼️
{ providerModel: "" }

Update a mapping item
Delete it then recreate it.

https://huggingface.co/togethercomputer

Unset

JavaScript

List the whole mapping

GET /api/partners/{provider}/models

This gets all mapping items from the DB. For clarity/DX, the output is grouped by task.

‼️ Important Note: this is publicly accessible. It's useful to be transparent by default, helps debug
client SDKs, etc.

{
​ "text-to-image": {
​ ​ "black-forest-labs/FLUX.1-Canny-dev":
"black-forest-labs/FLUX.1-canny",
​ ​ "black-forest-labs/FLUX.1-Depth-dev":
"black-forest-labs/FLUX.1-depth",
​ ​ "filter|base_model:adapter:black-forest-labs/FLUX.1-dev":
"fal/flux-lora",
​ },
​ "conversational": {
​ ​ "deepseek-ai/DeepSeek-R1": "deepseek-ai/DeepSeek-R1",
​ },
​ "text-generation": {
​ ​ "meta-llama/Llama-2-70b-hf": "meta-llama/Llama-2-70b-hf",
​ ​ "mistralai/Mixtral-8x7B-v0.1": "mistralai/Mixtral-8x7B-v0.1",
​ },
};

This outputs the equivalent of the hardcoded mappings we originally used in huggingface.js:
https://github.com/huggingface/huggingface.js/blob/e288dbe23c89962dae38a2d7caee5c4fd5a7
1e4e/packages/inference/src/providers/together.ts

3.​ For billing, implement a Request-Cost HTTP
trailer

https://github.com/huggingface/huggingface.js/blob/e288dbe23c89962dae38a2d7caee5c4fd5a71e4e/packages/inference/src/providers/together.ts
https://github.com/huggingface/huggingface.js/blob/e288dbe23c89962dae38a2d7caee5c4fd5a71e4e/packages/inference/src/providers/together.ts

Unset

For routed requests (see figure below), i.e. when users authenticate via HF, our intent is that
our users only pay the standard provider API rates. There's no additional markup from us, we
just pass through the provider costs directly.

For LLM providers, the current workaround is to extract numbers of input and output tokens in
the responses and multiply by a hardcoded pricing table – this is quite brittle.

We propose an easier way to figure out this cost and charge it to our users, by asking you to
provide the cost for each request in an HTTP trailer.

What is a HTTP Trailer

it’s like a HTTP header, but comes after the response body (given generally you only know at
the end of the AI model generation how much it costs):

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Trailer: Request-Cost

--- response body ---
Request-Cost: nanousd=120

In which unit is it defined
We require the price to be a integer number of nano-USDs (10^-9 USD)

4.​ Final miscellaneous details
Question: by default in which order do we list providers in the settings page

Answer: the default sort is by total number of requests routed by HF over the
last 7 days. This order defines which provider will be used in priority by the widget on the
model page (but the user’s order takes precedence).

	Inference Providers integration requirements 💟
	1.​Play with the huggingface.js/inference client
	What is a Task
	Task API schema

	2.​Implement the Model Mapping API
	Register a mapping item
	Access control
	Validation

	Delete a mapping item
	Update a mapping item
	List the whole mapping

	3.​For billing, implement a Request-Cost HTTP trailer
	What is a HTTP Trailer
	In which unit is it defined

	4.​Final miscellaneous details

