|
import dataclasses |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import transformers |
|
|
|
from .ultravox_config import UltravoxConfig |
|
|
|
|
|
@dataclasses.dataclass |
|
class DataCollatorForSeq2SeqWithAudio(transformers.DataCollatorForSeq2Seq): |
|
|
|
include_alt_fields: bool = False |
|
|
|
def __call__(self, features, *args, **kwargs): |
|
audio_values = [x for f in features for x in f.pop("audio_values", [])] |
|
audio_lens = [x for f in features for x in f.pop("audio_lens", [])] |
|
audio_token_len = [x for f in features for x in f.pop("audio_token_len", [])] |
|
audio_token_start_idx = [ |
|
x for f in features for x in f.pop("audio_token_start_idx", []) |
|
] |
|
|
|
if self.include_alt_fields: |
|
|
|
alt_features = [ |
|
{ |
|
"input_ids": f.pop("alt_input_ids"), |
|
"attention_mask": f.pop("alt_attention_mask"), |
|
"labels": f.pop("alt_labels"), |
|
} |
|
for f in features |
|
] |
|
|
|
batch = super().__call__(features, *args, **kwargs) |
|
if self.include_alt_fields: |
|
alt_batch = super().__call__(alt_features, *args, **kwargs) |
|
batch["alt_input_ids"] = alt_batch["input_ids"] |
|
batch["alt_attention_mask"] = alt_batch["attention_mask"] |
|
batch["alt_labels"] = alt_batch["labels"] |
|
|
|
batch["audio_token_start_idx"] = torch.stack(audio_token_start_idx) |
|
batch["audio_lens"] = torch.stack(audio_lens) |
|
batch["audio_token_len"] = torch.stack(audio_token_len) |
|
|
|
|
|
if audio_values: |
|
max_len = max([x.shape[-1] for x in audio_values]) |
|
batch["audio_values"] = torch.stack( |
|
[F.pad(x, (0, max_len - x.shape[-1])) for x in audio_values] |
|
) |
|
if self.tokenizer.padding_side == "left": |
|
input_ids_lens = torch.LongTensor( |
|
[f["input_ids"].shape[-1] for f in features] |
|
) |
|
displacement = batch["input_ids"].shape[-1] - input_ids_lens |
|
displacement = displacement.repeat_interleave( |
|
batch["audio_batch_size"].squeeze(-1) |
|
) |
|
batch["audio_token_start_idx"] += displacement.to( |
|
batch["audio_token_start_idx"].device |
|
) |
|
return batch |
|
|
|
|
|
class UltravoxProcessor(transformers.ProcessorMixin): |
|
""" |
|
Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor. |
|
|
|
Args: |
|
audio_processor: The audio processor for the audio encoder. |
|
tokenizer: The tokenizer for the language model. |
|
""" |
|
|
|
attributes = ["audio_processor", "tokenizer"] |
|
audio_processor_class = ("WhisperProcessor",) |
|
tokenizer_class = ( |
|
"PreTrainedTokenizer", |
|
"PreTrainedTokenizerFast", |
|
) |
|
|
|
tokenizer: transformers.PreTrainedTokenizerBase |
|
audio_processor: transformers.ProcessorMixin |
|
|
|
def __init__( |
|
self, |
|
audio_processor=None, |
|
tokenizer=None, |
|
audio_padding: str = "longest", |
|
encoder_ds_factor: int = 2, |
|
stack_factor: int = 8, |
|
audio_placeholder: str = "<|audio|>", |
|
|
|
audio_context_size: Optional[int] = 3000, |
|
): |
|
""" |
|
Args: |
|
audio_processor: The audio processor for the audio encoder. |
|
tokenizer: The tokenizer for the language model. |
|
audio_padding: The padding strategy for the audio encoder. |
|
stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector. |
|
encoder_ds_factor: The downsampling factor of the audio encoder. |
|
audio_placeholder: The placeholder for the audio in the text. |
|
audio_context_size: The maximum number of frames that the audio encoder can handle. |
|
""" |
|
self.audio_padding = audio_padding |
|
self.encoder_ds_factor = encoder_ds_factor |
|
self.stack_factor = stack_factor |
|
self.audio_placeholder = audio_placeholder |
|
self.audio_token_replacement = tokenizer.eos_token |
|
self.audio_context_size = audio_context_size |
|
assert ( |
|
self.audio_token_replacement is not None |
|
), "The tokenizer has no EOS token. Cannot recover." |
|
if tokenizer.pad_token_id is None: |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
super().__init__(audio_processor=audio_processor, tokenizer=tokenizer) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs): |
|
config: UltravoxConfig = transformers.AutoConfig.from_pretrained( |
|
pretrained_model_name_or_path, **kwargs |
|
) |
|
audio_processor = transformers.AutoProcessor.from_pretrained( |
|
config.audio_model_id |
|
or config.audio_config._name_or_path |
|
or "openai/whisper-tiny" |
|
) |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
pretrained_model_name_or_path, **kwargs |
|
) |
|
tokenizer.padding_side = "left" |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
return cls( |
|
audio_processor=audio_processor, |
|
tokenizer=tokenizer, |
|
stack_factor=config.stack_factor, |
|
) |
|
|
|
def _chunk_and_pad_audio( |
|
self, audio_values: torch.Tensor, audio_lens: torch.Tensor |
|
) -> Dict[str, Any]: |
|
""" |
|
Processes the audio batch by chunking any items in the batch according to the audio_context_size, |
|
padding the last chunk if needed, and returns a dictionary with updated audio data. |
|
|
|
Args: |
|
audio_values (torch.Tensor): A tensor of audio values (e.g., in B, D, T format). |
|
audio_lens (torch.Tensor): A tensor of audio lengths. |
|
|
|
Returns: |
|
Dict[str, Any]: Dictionary with the following keys: |
|
- "audio_values": The concatenated audio tensor after chunking and padding. |
|
- "audio_lens": Tensor of lengths for each chunk. |
|
- "audio_is_continuation": Tensor of booleans indicating if the chunk is a continuation of the previous chunk. |
|
- "audio_batch_size": A Tensor with one integer representing the number of chunks. |
|
|
|
""" |
|
chunked_audio_values: List[torch.Tensor] = [] |
|
chunked_audio_lens: List[int] = [] |
|
is_continuation_list: List[bool] = [] |
|
context_size = self.audio_context_size or audio_values.shape[-1] |
|
|
|
for audio, audio_len in zip(audio_values, audio_lens): |
|
for offset in range(0, audio_len, context_size): |
|
is_continuation = offset > 0 |
|
chunk = audio[..., offset : offset + context_size] |
|
if is_continuation and chunk.shape[-1] < context_size: |
|
|
|
|
|
|
|
|
|
|
|
chunk = F.pad(chunk, (0, context_size - chunk.shape[-1])) |
|
chunked_audio_values.append(torch.as_tensor(chunk)) |
|
chunked_audio_lens.append(min(audio_len - offset, context_size)) |
|
is_continuation_list.append(is_continuation) |
|
|
|
return { |
|
"audio_values": torch.stack(chunked_audio_values), |
|
"audio_lens": torch.tensor(chunked_audio_lens), |
|
"audio_is_continuation": torch.tensor(is_continuation_list), |
|
"audio_batch_size": torch.tensor([len(chunked_audio_values)]), |
|
} |
|
|
|
def __call__( |
|
self, |
|
text: Optional[str] = None, |
|
audio: Optional[Union[np.ndarray, torch.Tensor]] = None, |
|
audios: Optional[ |
|
Union[ |
|
List[Union[np.ndarray, torch.Tensor]], Union[np.ndarray, torch.Tensor] |
|
] |
|
] = None, |
|
sampling_rate: Optional[int] = None, |
|
return_tensors: Optional[ |
|
Union[str, transformers.TensorType] |
|
] = transformers.TensorType.PYTORCH, |
|
**kwargs, |
|
) -> transformers.BatchFeature: |
|
""" |
|
Main method to prepare for the model one text sequence and audio. This method forwards the `text` |
|
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode |
|
the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to |
|
audio processor's [`~WhisperProcessor.__call__`] if `audio` is not `None`. Please refer to the docstring |
|
of the above two methods for more information. |
|
|
|
Args: |
|
text (`str`, `List[str]`): |
|
The sequence to be encoded. Sequence can be a string or (pretokenized string). |
|
audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The audio to be prepared. Audio can be a single-channel (1-dimensional) NumPy array or PyTorch tensor. |
|
audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
A list or two dimensional array of audio to be prepared. |
|
sampling_rate (`int`, *optional*, defaults to 16000): |
|
Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what |
|
you are doing. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`. |
|
- **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound. |
|
Returned when `audio` is not `None`. |
|
- **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`. |
|
""" |
|
|
|
if audio is not None and audios is not None: |
|
raise ValueError("Only one of `audio` or `audios` should be provided.") |
|
elif audio is not None: |
|
audios = audio if isinstance(audio, list) or audio.ndim == 2 else [audio] |
|
elif audios is None: |
|
audios = [] |
|
|
|
data = {} |
|
audio_is_continuation = [] |
|
if len(audios) > 0: |
|
audios = [x.numpy() if isinstance(x, torch.Tensor) else x for x in audios] |
|
|
|
|
|
hop_length = self.audio_processor.feature_extractor.hop_length |
|
audios = [ |
|
( |
|
np.pad(x, (0, 2 * hop_length - len(x)), mode="constant") |
|
if len(x) < 2 * hop_length |
|
else x |
|
) |
|
for x in audios |
|
] |
|
|
|
|
|
x: transformers.BatchFeature = self.audio_processor( |
|
audios, |
|
sampling_rate=sampling_rate, |
|
padding="longest", |
|
pad_to_multiple_of=hop_length, |
|
truncation=False, |
|
return_attention_mask=True, |
|
**kwargs, |
|
) |
|
|
|
data.update( |
|
self._chunk_and_pad_audio( |
|
audio_values=torch.as_tensor( |
|
x.input_features if "input_features" in x else x.input_values |
|
), |
|
audio_lens=torch.as_tensor(x.attention_mask).sum(-1), |
|
) |
|
) |
|
|
|
audio_is_continuation = data.pop("audio_is_continuation") |
|
data["audio_token_len"] = torch.ceil( |
|
data["audio_lens"] / (self.encoder_ds_factor * self.stack_factor) |
|
).to(dtype=torch.int) |
|
|
|
if text is not None: |
|
if not isinstance(text, str): |
|
raise ValueError("Text must be a string. Batch mode not supported yet.") |
|
|
|
|
|
tokenized_parts = self.tokenizer( |
|
text.split( |
|
"<|audio|>" |
|
), |
|
add_special_tokens=False, |
|
**kwargs, |
|
) |
|
|
|
audio_token_start_idx = [] |
|
replacement_token_id = self.tokenizer.get_vocab()[ |
|
self.audio_token_replacement |
|
] |
|
placeholder_index = -1 |
|
split_input_ids = tokenized_parts["input_ids"] |
|
input_ids: List[int] = [] |
|
|
|
for i, token_len in enumerate(data.get("audio_token_len", [])): |
|
if not audio_is_continuation[i]: |
|
placeholder_index += 1 |
|
if placeholder_index >= len(split_input_ids): |
|
raise ValueError( |
|
f"Text contains too few audio placeholders. (Expected {len(audios)} placeholders)" |
|
) |
|
|
|
input_ids.extend(split_input_ids[placeholder_index]) |
|
|
|
audio_token_start_idx.append(len(input_ids)) |
|
|
|
input_ids.extend([replacement_token_id] * token_len) |
|
|
|
|
|
placeholder_index += 1 |
|
if placeholder_index != len(split_input_ids) - 1: |
|
raise ValueError( |
|
f"Text contains too many audio placeholders. (Expected {len(audios)} placeholders)" |
|
) |
|
input_ids.extend(split_input_ids[placeholder_index]) |
|
|
|
if "audio_token_len" in data: |
|
data["audio_token_start_idx"] = torch.as_tensor(audio_token_start_idx) |
|
|
|
data["input_ids"] = [input_ids] |
|
data["attention_mask"] = [[1] * len(input_ids)] |
|
|
|
|
|
|
|
return transformers.BatchFeature(data=data, tensor_type=return_tensors) |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
audio_processor_input_names = self.audio_processor.model_input_names |
|
return list(set(tokenizer_input_names + audio_processor_input_names)) |
|
|
|
|
|
UltravoxProcessor.register_for_auto_class() |
|
|
|
transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor) |
|
|