redmoe-ai-v1 chenj123 commited on
Commit
325ed02
·
verified ·
1 Parent(s): e315fc3

Update modeling_dots_vision.py (#19)

Browse files

- Update modeling_dots_vision.py (a455edb59a10ff47d298fd2ab6b3fcf53417b42a)


Co-authored-by: chen.jian <[email protected]>

Files changed (1) hide show
  1. modeling_dots_vision.py +133 -26
modeling_dots_vision.py CHANGED
@@ -4,16 +4,29 @@ import torch
4
  import torch.nn as nn
5
  import torch.nn.functional as F
6
  import torch.utils.checkpoint
7
- from flash_attn import flash_attn_varlen_func
 
 
 
 
 
 
 
 
8
  from torch.nn import LayerNorm
9
  from transformers.modeling_utils import PreTrainedModel
10
  from .configuration_dots import DotsVisionConfig
11
 
 
 
 
 
 
12
 
13
  def rotate_half(x):
14
  """Rotates half the hidden dims of the input."""
15
  x1 = x[..., : x.shape[-1] // 2]
16
- x2 = x[..., x.shape[-1] // 2 :]
17
  return torch.cat((-x2, x1), dim=-1)
18
 
19
 
@@ -48,15 +61,15 @@ class VisionRotaryEmbedding(nn.Module):
48
 
49
  class PatchMerger(nn.Module):
50
  def __init__(
51
- self,
52
- dim: int,
53
- context_dim: int,
54
- spatial_merge_size: int = 2,
55
- pre_norm="layernorm",
56
- init_merger_std=None,
57
  ) -> None:
58
  super().__init__()
59
- self.hidden_size = context_dim * (spatial_merge_size**2)
60
  self.pre_norm = pre_norm
61
  if self.pre_norm == "layernorm":
62
  self.ln_q = LayerNorm(context_dim, eps=1e-6)
@@ -94,10 +107,10 @@ class VisionAttention(nn.Module):
94
  self.proj = nn.Linear(dim, dim, bias=bias)
95
 
96
  def forward(
97
- self,
98
- hidden_states: torch.Tensor,
99
- cu_seqlens: torch.Tensor,
100
- rotary_pos_emb: torch.Tensor = None,
101
  ) -> torch.Tensor:
102
  seq_length = hidden_states.shape[0]
103
 
@@ -109,7 +122,7 @@ class VisionAttention(nn.Module):
109
  [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
110
  )
111
  for i in range(1, len(cu_seqlens)):
112
- attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0
113
 
114
  q = q.transpose(0, 1)
115
  k = k.transpose(0, 1)
@@ -134,10 +147,10 @@ class VisionFlashAttention2(nn.Module):
134
  self.is_causal = config.is_causal
135
 
136
  def forward(
137
- self,
138
- hidden_states: torch.Tensor,
139
- cu_seqlens: torch.Tensor,
140
- rotary_pos_emb: torch.Tensor = None,
141
  ) -> torch.Tensor:
142
  seq_length = hidden_states.shape[0]
143
  q, k, v = (
@@ -154,6 +167,89 @@ class VisionFlashAttention2(nn.Module):
154
  return attn_output
155
 
156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
  class VisionSdpaAttention(nn.Module):
158
  def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
159
  super().__init__()
@@ -163,10 +259,10 @@ class VisionSdpaAttention(nn.Module):
163
  self.config = config
164
 
165
  def forward(
166
- self,
167
- hidden_states: torch.Tensor,
168
- cu_seqlens: torch.Tensor,
169
- rotary_pos_emb: torch.Tensor = None,
170
  ) -> torch.Tensor:
171
  seq_length = hidden_states.shape[0]
172
  q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
@@ -176,7 +272,7 @@ class VisionSdpaAttention(nn.Module):
176
 
177
  attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
178
  for i in range(1, len(cu_seqlens)):
179
- attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
180
 
181
  q = q.transpose(0, 1)
182
  k = k.transpose(0, 1)
@@ -192,8 +288,10 @@ class VisionSdpaAttention(nn.Module):
192
 
193
  DOTS_VISION_ATTENTION_CLASSES = {
194
  "eager": VisionAttention,
 
195
  "flash_attention_2": VisionFlashAttention2,
196
  "sdpa": VisionSdpaAttention,
 
197
  }
198
 
199
 
@@ -231,7 +329,6 @@ class DotsSwiGLUFFN(nn.Module):
231
  return x
232
 
233
 
234
-
235
  class DotsPatchEmbed(nn.Module):
236
  def __init__(self, config):
237
  super().__init__()
@@ -249,7 +346,7 @@ class DotsPatchEmbed(nn.Module):
249
  self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
250
 
251
  def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
252
- x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0]
253
  x = self.proj(x).view(-1, self.embed_dim)
254
  x = self.norm(x)
255
  return x
@@ -272,6 +369,16 @@ class DotsViTPreprocessor(nn.Module):
272
  class DotsVisionBlock(nn.Module):
273
  def __init__(self, config, attn_implementation: str = "flash_attention_2"):
274
  super().__init__()
 
 
 
 
 
 
 
 
 
 
275
  self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation](
276
  config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias
277
  )
@@ -401,4 +508,4 @@ class DotsVisionTransformer(PreTrainedModel):
401
  hidden_states = self.post_trunk_norm(hidden_states)
402
 
403
  hidden_states = self.merger(hidden_states)
404
- return hidden_states
 
4
  import torch.nn as nn
5
  import torch.nn.functional as F
6
  import torch.utils.checkpoint
7
+
8
+ flash_attn_available = True
9
+ npu_available = True
10
+
11
+ try:
12
+ from flash_attn import flash_attn_varlen_func
13
+ except ImportError:
14
+ flash_attn_available = False
15
+
16
  from torch.nn import LayerNorm
17
  from transformers.modeling_utils import PreTrainedModel
18
  from .configuration_dots import DotsVisionConfig
19
 
20
+ try:
21
+ import torch_npu
22
+ except ImportError:
23
+ npu_available = False
24
+
25
 
26
  def rotate_half(x):
27
  """Rotates half the hidden dims of the input."""
28
  x1 = x[..., : x.shape[-1] // 2]
29
+ x2 = x[..., x.shape[-1] // 2:]
30
  return torch.cat((-x2, x1), dim=-1)
31
 
32
 
 
61
 
62
  class PatchMerger(nn.Module):
63
  def __init__(
64
+ self,
65
+ dim: int,
66
+ context_dim: int,
67
+ spatial_merge_size: int = 2,
68
+ pre_norm="layernorm",
69
+ init_merger_std=None,
70
  ) -> None:
71
  super().__init__()
72
+ self.hidden_size = context_dim * (spatial_merge_size ** 2)
73
  self.pre_norm = pre_norm
74
  if self.pre_norm == "layernorm":
75
  self.ln_q = LayerNorm(context_dim, eps=1e-6)
 
107
  self.proj = nn.Linear(dim, dim, bias=bias)
108
 
109
  def forward(
110
+ self,
111
+ hidden_states: torch.Tensor,
112
+ cu_seqlens: torch.Tensor,
113
+ rotary_pos_emb: torch.Tensor = None,
114
  ) -> torch.Tensor:
115
  seq_length = hidden_states.shape[0]
116
 
 
122
  [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
123
  )
124
  for i in range(1, len(cu_seqlens)):
125
+ attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = 0
126
 
127
  q = q.transpose(0, 1)
128
  k = k.transpose(0, 1)
 
147
  self.is_causal = config.is_causal
148
 
149
  def forward(
150
+ self,
151
+ hidden_states: torch.Tensor,
152
+ cu_seqlens: torch.Tensor,
153
+ rotary_pos_emb: torch.Tensor = None,
154
  ) -> torch.Tensor:
155
  seq_length = hidden_states.shape[0]
156
  q, k, v = (
 
167
  return attn_output
168
 
169
 
170
+ class VisionAttentionV2(nn.Module):
171
+ def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
172
+ super().__init__()
173
+ self.num_heads = num_heads
174
+ self.head_dim = dim // num_heads
175
+ self.qkv = nn.Linear(dim, dim * 3, bias=bias)
176
+ self.proj = nn.Linear(dim, dim, bias=bias)
177
+
178
+ def forward(
179
+ self,
180
+ hidden_states: torch.Tensor,
181
+ cu_seqlens: torch.Tensor,
182
+ rotary_pos_emb: torch.Tensor = None,
183
+ ) -> torch.Tensor:
184
+ seq_length = hidden_states.shape[0]
185
+
186
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
187
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
188
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
189
+
190
+ seqlens = torch.diff(cu_seqlens).tolist()
191
+
192
+ q_list = torch.split(q, seqlens, 0)
193
+ k_list = torch.split(k, seqlens, 0)
194
+ v_list = torch.split(v, seqlens, 0)
195
+ # eager attention 空间复杂度为 O(n^2) , n 为 b*s(batch_size * seq_len), 序列太长容易OOM, 这个实现 更具batch 切分 seq
196
+ # 减少内存需求, 计算相对 continus batching 较慢。
197
+ outputs = []
198
+ for q_i, k_i, v_i in zip(q_list, k_list, v_list):
199
+ q_i = q_i.transpose(0, 1)
200
+ k_i = k_i.transpose(0, 1)
201
+ v_i = v_i.transpose(0, 1)
202
+ out = torch.matmul(q_i, k_i.transpose(1, 2)) / math.sqrt(self.head_dim)
203
+ out = nn.functional.softmax(out, dim=-1, dtype=torch.float32).to(q.dtype)
204
+ out = torch.matmul(out, v_i)
205
+ out = out.transpose(0, 1)
206
+ outputs.append(out)
207
+
208
+ attn_output = torch.concat(outputs, dim=0)
209
+ attn_output = attn_output.reshape(seq_length, -1)
210
+ attn_output = self.proj(attn_output)
211
+ return attn_output
212
+
213
+
214
+ class VisionAscendAttention(nn.Module):
215
+ def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
216
+ super().__init__()
217
+ self.num_heads = num_heads
218
+ self.head_dim = dim // num_heads
219
+ self.qkv = nn.Linear(dim, dim * 3, bias=bias)
220
+ self.proj = nn.Linear(dim, dim, bias=bias)
221
+ self.config = config
222
+
223
+ def forward(
224
+ self,
225
+ hidden_states: torch.Tensor,
226
+ cu_seqlens: torch.Tensor,
227
+ rotary_pos_emb: torch.Tensor = None,
228
+ ) -> torch.Tensor:
229
+ seq_length = hidden_states.shape[0]
230
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
231
+
232
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
233
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
234
+
235
+ attention_mask = torch.ones([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
236
+ for i in range(1, len(cu_seqlens)):
237
+ attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = False
238
+
239
+ q = q.transpose(0, 1).unsqueeze(0)
240
+ k = k.transpose(0, 1).unsqueeze(0)
241
+ v = v.transpose(0, 1).unsqueeze(0)
242
+
243
+ attn_output = torch_npu.npu_prompt_flash_attention(q, k, v,
244
+ atten_mask=attention_mask,
245
+ num_heads=self.num_heads, input_layout="BNSD",
246
+ scale_value=self.head_dim ** -0.5)
247
+ attn_output = attn_output.squeeze(0).transpose(0, 1)
248
+ attn_output = attn_output.reshape(seq_length, -1)
249
+ attn_output = self.proj(attn_output)
250
+ return attn_output
251
+
252
+
253
  class VisionSdpaAttention(nn.Module):
254
  def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
255
  super().__init__()
 
259
  self.config = config
260
 
261
  def forward(
262
+ self,
263
+ hidden_states: torch.Tensor,
264
+ cu_seqlens: torch.Tensor,
265
+ rotary_pos_emb: torch.Tensor = None,
266
  ) -> torch.Tensor:
267
  seq_length = hidden_states.shape[0]
268
  q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
 
272
 
273
  attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
274
  for i in range(1, len(cu_seqlens)):
275
+ attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = True
276
 
277
  q = q.transpose(0, 1)
278
  k = k.transpose(0, 1)
 
288
 
289
  DOTS_VISION_ATTENTION_CLASSES = {
290
  "eager": VisionAttention,
291
+ "eager_v2": VisionAttentionV2, # 内存更少
292
  "flash_attention_2": VisionFlashAttention2,
293
  "sdpa": VisionSdpaAttention,
294
+ "ascend_fa": VisionAscendAttention, # ascend, 长序列精度下降严重。
295
  }
296
 
297
 
 
329
  return x
330
 
331
 
 
332
  class DotsPatchEmbed(nn.Module):
333
  def __init__(self, config):
334
  super().__init__()
 
346
  self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
347
 
348
  def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
349
+ x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0]
350
  x = self.proj(x).view(-1, self.embed_dim)
351
  x = self.norm(x)
352
  return x
 
369
  class DotsVisionBlock(nn.Module):
370
  def __init__(self, config, attn_implementation: str = "flash_attention_2"):
371
  super().__init__()
372
+
373
+ if attn_implementation == "flash_attention_2" and not flash_attn_available:
374
+ # fallback to eager
375
+ attn_implementation = "eager"
376
+ print("flash attention not available! fallback to eager implementation ")
377
+
378
+ if attn_implementation == "ascend_fa" and not npu_available:
379
+ attn_implementation = "eager"
380
+ print("flash attention not available! fallback to eager implementation ")
381
+
382
  self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation](
383
  config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias
384
  )
 
508
  hidden_states = self.post_trunk_norm(hidden_states)
509
 
510
  hidden_states = self.merger(hidden_states)
511
+ return hidden_states