Update configuration_gpt_refact.py
Browse files- configuration_gpt_refact.py +20 -30
configuration_gpt_refact.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
from transformers.utils import logging
|
| 3 |
|
| 4 |
-
|
| 5 |
logger = logging.get_logger(__name__)
|
| 6 |
|
| 7 |
|
|
@@ -16,26 +15,23 @@ class GPTRefactConfig(PretrainedConfig):
|
|
| 16 |
}
|
| 17 |
|
| 18 |
def __init__(
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
embd_pdrop=0.1,
|
| 37 |
-
attn_pdrop=0.1,
|
| 38 |
-
**kwargs,
|
| 39 |
):
|
| 40 |
self.vocab_size = vocab_size
|
| 41 |
self.n_positions = n_positions
|
|
@@ -43,19 +39,13 @@ class GPTRefactConfig(PretrainedConfig):
|
|
| 43 |
self.n_layer = n_layer
|
| 44 |
self.n_head = n_head
|
| 45 |
self.n_inner = None
|
| 46 |
-
self.resid_pdrop = resid_pdrop
|
| 47 |
-
self.embd_pdrop = embd_pdrop
|
| 48 |
-
self.attn_pdrop = attn_pdrop
|
| 49 |
self.layer_norm_epsilon = layer_norm_epsilon
|
| 50 |
self.initializer_range = initializer_range
|
| 51 |
-
self.scale_attn_weights = scale_attn_weights
|
| 52 |
self.use_cache = use_cache
|
| 53 |
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
| 54 |
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
|
| 55 |
-
|
| 56 |
-
self.bos_token_id = bos_token_id
|
| 57 |
-
self.eos_token_id = eos_token_id
|
| 58 |
-
|
| 59 |
self.multi_query = multi_query
|
| 60 |
self.max_position_embeddings = max_position_embeddings
|
| 61 |
-
|
|
|
|
|
|
| 1 |
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
from transformers.utils import logging
|
| 3 |
|
|
|
|
| 4 |
logger = logging.get_logger(__name__)
|
| 5 |
|
| 6 |
|
|
|
|
| 15 |
}
|
| 16 |
|
| 17 |
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
vocab_size: int = 49216,
|
| 20 |
+
n_positions: int = 4096,
|
| 21 |
+
n_embd: int = 1024,
|
| 22 |
+
n_layer: int = 32,
|
| 23 |
+
n_head: int = 64,
|
| 24 |
+
max_position_embeddings: int = 4096,
|
| 25 |
+
multi_query: bool = True,
|
| 26 |
+
layer_norm_epsilon: float = 1e-5,
|
| 27 |
+
initializer_range: float = 0.02,
|
| 28 |
+
use_cache: bool = True,
|
| 29 |
+
eos_token_id: int = 0,
|
| 30 |
+
attention_softmax_in_fp32: bool = True,
|
| 31 |
+
scale_attention_softmax_in_fp32: bool = True,
|
| 32 |
+
attention_bias_in_fp32: bool = True,
|
| 33 |
+
torch_dtype: str = 'bfloat16',
|
| 34 |
+
**kwargs,
|
|
|
|
|
|
|
|
|
|
| 35 |
):
|
| 36 |
self.vocab_size = vocab_size
|
| 37 |
self.n_positions = n_positions
|
|
|
|
| 39 |
self.n_layer = n_layer
|
| 40 |
self.n_head = n_head
|
| 41 |
self.n_inner = None
|
|
|
|
|
|
|
|
|
|
| 42 |
self.layer_norm_epsilon = layer_norm_epsilon
|
| 43 |
self.initializer_range = initializer_range
|
|
|
|
| 44 |
self.use_cache = use_cache
|
| 45 |
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
| 46 |
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
|
| 47 |
+
self.attention_bias_in_fp32 = attention_bias_in_fp32
|
|
|
|
|
|
|
|
|
|
| 48 |
self.multi_query = multi_query
|
| 49 |
self.max_position_embeddings = max_position_embeddings
|
| 50 |
+
self.torch_dtype = torch_dtype
|
| 51 |
+
super().__init__(eos_token_id=eos_token_id, **kwargs)
|