wbi-sg commited on
Commit
e91ae0e
·
1 Parent(s): fefe953

First model version

Browse files
Files changed (4) hide show
  1. README.md +93 -3
  2. loss.tsv +101 -0
  3. pytorch_model.bin +3 -0
  4. training.log +0 -0
README.md CHANGED
@@ -1,3 +1,93 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - flair
4
+ - hunflair
5
+ - sequence-tagger-model
6
+ language: en
7
+ widget:
8
+ - text: "Isolate an enhancer element located between -89 and -50 bp in PAI-1"
9
+ ---
10
+
11
+ ## HunFlair model for ENHANCER
12
+
13
+ [HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR.md) (biomedical flair) for enhancer entity.
14
+
15
+
16
+ Predicts 1 tag:
17
+
18
+ | **tag** | **meaning** |
19
+ |---------------------------------|-----------|
20
+ | Enhancer | DNA enhancer region |
21
+
22
+ ---
23
+
24
+ ### Demo: How to use in Flair
25
+
26
+ Requires:
27
+ - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
28
+
29
+ ```python
30
+ from flair.data import Sentence
31
+ from flair.models import SequenceTagger
32
+ # for biomedical-specific tokenization:
33
+ # from flair.tokenization import SciSpacyTokenizer
34
+
35
+ # load tagger
36
+ tagger = SequenceTagger.load("regel-corpus/hunflair-promoter")
37
+
38
+ text = "An upstream activator of the mitogen-activated protein (MAP) kinase pathways was used to isolate an enhancer element located between -89 and -50 bp in PAI-1 promoter that was activated by MEKK-1."
39
+
40
+ # make example sentence
41
+ sentence = Sentence(text)
42
+
43
+ # for biomedical-specific tokenization:
44
+ # sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer())
45
+
46
+ # predict NER tags
47
+ tagger.predict(sentence)
48
+
49
+ # print sentence
50
+ print(sentence)
51
+
52
+ # print predicted NER spans
53
+ print('The following NER tags are found:')
54
+ # iterate over entities and print
55
+ for entity in sentence.get_spans('ner'):
56
+ print(entity)
57
+
58
+ ```
59
+
60
+ This yields the following output:
61
+ ```
62
+ Span [18,19,20,21,22,23,24,25,26,27,28,29,30]: "enhancer element located between - 89 and - 50 bp in PAI-1 promoter" [− Labels: Enhancer (0.992)]
63
+ ```
64
+
65
+ So, the entity "*enhancer element located between - 89 and - 50 bp in PAI-1*" (labeled as a **enhancer**) is found in the sentence.
66
+
67
+ Alternatively download all models locally and use the `MultiTagger` class.
68
+
69
+ ```python
70
+ from flair.models import MultiTagger
71
+
72
+ tagger = [
73
+ './models/hunflair-promoter/pytorch_model.bin',
74
+ './models/hunflair-enhancer/pytorch_model.bin',
75
+ './models/hunflair-tfbs/pytorch_model.bin',
76
+ ]
77
+
78
+ tagger = MultiTagger.load(['./models/hunflair-'])
79
+
80
+ tagger.predict(sentence)
81
+ ```
82
+
83
+ ---
84
+
85
+ ### Cite
86
+
87
+ Please cite the following paper when using this model.
88
+
89
+ ```
90
+ TODO
91
+ ```
92
+
93
+
loss.tsv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
2
+ 1 09:41:34 0 0.1000 0.22491067506275775
3
+ 2 09:41:59 0 0.1000 0.09540524248208863
4
+ 3 09:42:24 0 0.1000 0.07867578748477062
5
+ 4 09:42:50 0 0.1000 0.06005205636633055
6
+ 5 09:43:17 0 0.1000 0.05189053046252827
7
+ 6 09:43:43 0 0.1000 0.04983380889109037
8
+ 7 09:44:10 0 0.1000 0.04319879135796184
9
+ 8 09:44:34 0 0.1000 0.037798719213111696
10
+ 9 09:45:00 0 0.1000 0.036715482863375525
11
+ 10 09:45:26 0 0.1000 0.03541968815262162
12
+ 11 09:45:51 0 0.1000 0.030463880929543555
13
+ 12 09:46:15 1 0.1000 0.03199819952256638
14
+ 13 09:46:40 0 0.1000 0.027123536136309467
15
+ 14 09:47:04 1 0.1000 0.02867321133241355
16
+ 15 09:47:30 0 0.1000 0.024478842369054343
17
+ 16 09:47:54 0 0.1000 0.02339520322777779
18
+ 17 09:48:18 0 0.1000 0.02298362407674235
19
+ 18 09:48:42 0 0.1000 0.022469979959356512
20
+ 19 09:49:07 0 0.1000 0.020454958353153703
21
+ 20 09:49:31 0 0.1000 0.019427691448110403
22
+ 21 09:49:54 0 0.1000 0.018857659265379346
23
+ 22 09:50:20 1 0.1000 0.019413621712259254
24
+ 23 09:50:44 0 0.1000 0.01800921754817151
25
+ 24 09:51:10 0 0.1000 0.015716558037127508
26
+ 25 09:51:34 1 0.1000 0.0157715936532531
27
+ 26 09:51:59 2 0.1000 0.016304819579218286
28
+ 27 09:52:23 3 0.1000 0.015771658888980793
29
+ 28 09:52:46 0 0.1000 0.014166143670960559
30
+ 29 09:53:11 1 0.1000 0.015244004711495921
31
+ 30 09:53:37 2 0.1000 0.014628538248473355
32
+ 31 09:54:02 3 0.1000 0.014741252348831271
33
+ 32 09:54:26 0 0.1000 0.013542080021501101
34
+ 33 09:54:50 0 0.1000 0.013291514735895243
35
+ 34 09:55:14 1 0.1000 0.01412149651304798
36
+ 35 09:55:38 0 0.1000 0.012741249671178692
37
+ 36 09:56:04 0 0.1000 0.01251944257768913
38
+ 37 09:56:30 0 0.1000 0.011732545763602591
39
+ 38 09:56:55 0 0.1000 0.01143608681708956
40
+ 39 09:57:19 1 0.1000 0.01195271674029289
41
+ 40 09:57:42 0 0.1000 0.010767141026550379
42
+ 41 09:58:09 0 0.1000 0.010237127371528952
43
+ 42 09:58:33 1 0.1000 0.010643142550135331
44
+ 43 09:59:00 2 0.1000 0.01094010041047116
45
+ 44 09:59:27 0 0.1000 0.010087641413044109
46
+ 45 09:59:50 0 0.1000 0.00823510319755989
47
+ 46 10:00:16 1 0.1000 0.009326285148125233
48
+ 47 10:00:41 2 0.1000 0.01054708950029626
49
+ 48 10:01:07 3 0.1000 0.008555629359071507
50
+ 49 10:01:33 4 0.1000 0.009552823464249679
51
+ 50 10:01:57 0 0.0500 0.006584109545918952
52
+ 51 10:02:22 0 0.0500 0.006143981067899616
53
+ 52 10:02:48 1 0.0500 0.00641175839562549
54
+ 53 10:03:13 0 0.0500 0.005995899448442065
55
+ 54 10:03:36 1 0.0500 0.006657823603203956
56
+ 55 10:04:01 0 0.0500 0.005971586031393227
57
+ 56 10:04:25 0 0.0500 0.005900435538364003
58
+ 57 10:04:49 0 0.0500 0.005305763384004237
59
+ 58 10:05:15 1 0.0500 0.005482844688467526
60
+ 59 10:05:40 2 0.0500 0.006185834803064269
61
+ 60 10:06:04 3 0.0500 0.005692241540524938
62
+ 61 10:06:31 4 0.0500 0.005588236063552157
63
+ 62 10:06:54 0 0.0250 0.004684547569865091
64
+ 63 10:07:21 0 0.0250 0.004052906940021382
65
+ 64 10:07:45 1 0.0250 0.00438792720598278
66
+ 65 10:08:10 0 0.0250 0.0036110596380927572
67
+ 66 10:08:34 0 0.0250 0.003521362926455018
68
+ 67 10:08:59 1 0.0250 0.0041407198092575795
69
+ 68 10:09:23 2 0.0250 0.003909185845182846
70
+ 69 10:09:48 3 0.0250 0.004171887944098019
71
+ 70 10:10:13 0 0.0250 0.0033525817751425663
72
+ 71 10:10:37 0 0.0250 0.0033121030555752877
73
+ 72 10:11:01 1 0.0250 0.003853061492842992
74
+ 73 10:11:25 2 0.0250 0.004022790352875278
75
+ 74 10:11:51 3 0.0250 0.0035116070292357774
76
+ 75 10:12:17 0 0.0250 0.003100549348507689
77
+ 76 10:12:43 1 0.0250 0.0036345029288567883
78
+ 77 10:13:10 2 0.0250 0.0035057232098130403
79
+ 78 10:13:35 3 0.0250 0.003761142967476833
80
+ 79 10:14:02 4 0.0250 0.0031668727934154603
81
+ 80 10:14:29 1 0.0125 0.0036585737449783473
82
+ 81 10:14:54 0 0.0125 0.003036957573024784
83
+ 82 10:15:20 1 0.0125 0.0034962114370731055
84
+ 83 10:15:46 2 0.0125 0.0031536131420487894
85
+ 84 10:16:13 3 0.0125 0.0032018311299707564
86
+ 85 10:16:40 4 0.0125 0.003895493801836416
87
+ 86 10:17:05 0 0.0063 0.0028653602050431742
88
+ 87 10:17:29 1 0.0063 0.0031872365007667926
89
+ 88 10:17:54 2 0.0063 0.002925929233518536
90
+ 89 10:18:20 3 0.0063 0.0032362375053917756
91
+ 90 10:18:45 0 0.0063 0.002727499838910293
92
+ 91 10:19:10 1 0.0063 0.0035378607194703183
93
+ 92 10:19:34 0 0.0063 0.0024823026009001287
94
+ 93 10:19:58 1 0.0063 0.0033859749291065993
95
+ 94 10:20:23 2 0.0063 0.002602916180012227
96
+ 95 10:20:47 3 0.0063 0.003145729492406575
97
+ 96 10:21:12 4 0.0063 0.0026840901416120984
98
+ 97 10:21:38 1 0.0031 0.0028548290770653664
99
+ 98 10:22:05 2 0.0031 0.0027221174066091006
100
+ 99 10:22:32 3 0.0031 0.003077857307397596
101
+ 100 10:22:56 4 0.0031 0.002484985417728188
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ced0b96e5269c14364dd434ba56563401ede7054a14088c080cfe55b7843307
3
+ size 1104819835
training.log ADDED
The diff for this file is too large to render. See raw diff