First model version
Browse files- README.md +93 -3
- loss.tsv +101 -0
- pytorch_model.bin +3 -0
- training.log +0 -0
README.md
CHANGED
@@ -1,3 +1,93 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- hunflair
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: en
|
7 |
+
widget:
|
8 |
+
- text: "Isolate an enhancer element located between -89 and -50 bp in PAI-1"
|
9 |
+
---
|
10 |
+
|
11 |
+
## HunFlair model for ENHANCER
|
12 |
+
|
13 |
+
[HunFlair](https://github.com/flairNLP/flair/blob/master/resources/docs/HUNFLAIR.md) (biomedical flair) for enhancer entity.
|
14 |
+
|
15 |
+
|
16 |
+
Predicts 1 tag:
|
17 |
+
|
18 |
+
| **tag** | **meaning** |
|
19 |
+
|---------------------------------|-----------|
|
20 |
+
| Enhancer | DNA enhancer region |
|
21 |
+
|
22 |
+
---
|
23 |
+
|
24 |
+
### Demo: How to use in Flair
|
25 |
+
|
26 |
+
Requires:
|
27 |
+
- **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
28 |
+
|
29 |
+
```python
|
30 |
+
from flair.data import Sentence
|
31 |
+
from flair.models import SequenceTagger
|
32 |
+
# for biomedical-specific tokenization:
|
33 |
+
# from flair.tokenization import SciSpacyTokenizer
|
34 |
+
|
35 |
+
# load tagger
|
36 |
+
tagger = SequenceTagger.load("regel-corpus/hunflair-promoter")
|
37 |
+
|
38 |
+
text = "An upstream activator of the mitogen-activated protein (MAP) kinase pathways was used to isolate an enhancer element located between -89 and -50 bp in PAI-1 promoter that was activated by MEKK-1."
|
39 |
+
|
40 |
+
# make example sentence
|
41 |
+
sentence = Sentence(text)
|
42 |
+
|
43 |
+
# for biomedical-specific tokenization:
|
44 |
+
# sentence = Sentence(text, use_tokenizer=SciSpacyTokenizer())
|
45 |
+
|
46 |
+
# predict NER tags
|
47 |
+
tagger.predict(sentence)
|
48 |
+
|
49 |
+
# print sentence
|
50 |
+
print(sentence)
|
51 |
+
|
52 |
+
# print predicted NER spans
|
53 |
+
print('The following NER tags are found:')
|
54 |
+
# iterate over entities and print
|
55 |
+
for entity in sentence.get_spans('ner'):
|
56 |
+
print(entity)
|
57 |
+
|
58 |
+
```
|
59 |
+
|
60 |
+
This yields the following output:
|
61 |
+
```
|
62 |
+
Span [18,19,20,21,22,23,24,25,26,27,28,29,30]: "enhancer element located between - 89 and - 50 bp in PAI-1 promoter" [− Labels: Enhancer (0.992)]
|
63 |
+
```
|
64 |
+
|
65 |
+
So, the entity "*enhancer element located between - 89 and - 50 bp in PAI-1*" (labeled as a **enhancer**) is found in the sentence.
|
66 |
+
|
67 |
+
Alternatively download all models locally and use the `MultiTagger` class.
|
68 |
+
|
69 |
+
```python
|
70 |
+
from flair.models import MultiTagger
|
71 |
+
|
72 |
+
tagger = [
|
73 |
+
'./models/hunflair-promoter/pytorch_model.bin',
|
74 |
+
'./models/hunflair-enhancer/pytorch_model.bin',
|
75 |
+
'./models/hunflair-tfbs/pytorch_model.bin',
|
76 |
+
]
|
77 |
+
|
78 |
+
tagger = MultiTagger.load(['./models/hunflair-'])
|
79 |
+
|
80 |
+
tagger.predict(sentence)
|
81 |
+
```
|
82 |
+
|
83 |
+
---
|
84 |
+
|
85 |
+
### Cite
|
86 |
+
|
87 |
+
Please cite the following paper when using this model.
|
88 |
+
|
89 |
+
```
|
90 |
+
TODO
|
91 |
+
```
|
92 |
+
|
93 |
+
|
loss.tsv
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
+
1 09:41:34 0 0.1000 0.22491067506275775
|
3 |
+
2 09:41:59 0 0.1000 0.09540524248208863
|
4 |
+
3 09:42:24 0 0.1000 0.07867578748477062
|
5 |
+
4 09:42:50 0 0.1000 0.06005205636633055
|
6 |
+
5 09:43:17 0 0.1000 0.05189053046252827
|
7 |
+
6 09:43:43 0 0.1000 0.04983380889109037
|
8 |
+
7 09:44:10 0 0.1000 0.04319879135796184
|
9 |
+
8 09:44:34 0 0.1000 0.037798719213111696
|
10 |
+
9 09:45:00 0 0.1000 0.036715482863375525
|
11 |
+
10 09:45:26 0 0.1000 0.03541968815262162
|
12 |
+
11 09:45:51 0 0.1000 0.030463880929543555
|
13 |
+
12 09:46:15 1 0.1000 0.03199819952256638
|
14 |
+
13 09:46:40 0 0.1000 0.027123536136309467
|
15 |
+
14 09:47:04 1 0.1000 0.02867321133241355
|
16 |
+
15 09:47:30 0 0.1000 0.024478842369054343
|
17 |
+
16 09:47:54 0 0.1000 0.02339520322777779
|
18 |
+
17 09:48:18 0 0.1000 0.02298362407674235
|
19 |
+
18 09:48:42 0 0.1000 0.022469979959356512
|
20 |
+
19 09:49:07 0 0.1000 0.020454958353153703
|
21 |
+
20 09:49:31 0 0.1000 0.019427691448110403
|
22 |
+
21 09:49:54 0 0.1000 0.018857659265379346
|
23 |
+
22 09:50:20 1 0.1000 0.019413621712259254
|
24 |
+
23 09:50:44 0 0.1000 0.01800921754817151
|
25 |
+
24 09:51:10 0 0.1000 0.015716558037127508
|
26 |
+
25 09:51:34 1 0.1000 0.0157715936532531
|
27 |
+
26 09:51:59 2 0.1000 0.016304819579218286
|
28 |
+
27 09:52:23 3 0.1000 0.015771658888980793
|
29 |
+
28 09:52:46 0 0.1000 0.014166143670960559
|
30 |
+
29 09:53:11 1 0.1000 0.015244004711495921
|
31 |
+
30 09:53:37 2 0.1000 0.014628538248473355
|
32 |
+
31 09:54:02 3 0.1000 0.014741252348831271
|
33 |
+
32 09:54:26 0 0.1000 0.013542080021501101
|
34 |
+
33 09:54:50 0 0.1000 0.013291514735895243
|
35 |
+
34 09:55:14 1 0.1000 0.01412149651304798
|
36 |
+
35 09:55:38 0 0.1000 0.012741249671178692
|
37 |
+
36 09:56:04 0 0.1000 0.01251944257768913
|
38 |
+
37 09:56:30 0 0.1000 0.011732545763602591
|
39 |
+
38 09:56:55 0 0.1000 0.01143608681708956
|
40 |
+
39 09:57:19 1 0.1000 0.01195271674029289
|
41 |
+
40 09:57:42 0 0.1000 0.010767141026550379
|
42 |
+
41 09:58:09 0 0.1000 0.010237127371528952
|
43 |
+
42 09:58:33 1 0.1000 0.010643142550135331
|
44 |
+
43 09:59:00 2 0.1000 0.01094010041047116
|
45 |
+
44 09:59:27 0 0.1000 0.010087641413044109
|
46 |
+
45 09:59:50 0 0.1000 0.00823510319755989
|
47 |
+
46 10:00:16 1 0.1000 0.009326285148125233
|
48 |
+
47 10:00:41 2 0.1000 0.01054708950029626
|
49 |
+
48 10:01:07 3 0.1000 0.008555629359071507
|
50 |
+
49 10:01:33 4 0.1000 0.009552823464249679
|
51 |
+
50 10:01:57 0 0.0500 0.006584109545918952
|
52 |
+
51 10:02:22 0 0.0500 0.006143981067899616
|
53 |
+
52 10:02:48 1 0.0500 0.00641175839562549
|
54 |
+
53 10:03:13 0 0.0500 0.005995899448442065
|
55 |
+
54 10:03:36 1 0.0500 0.006657823603203956
|
56 |
+
55 10:04:01 0 0.0500 0.005971586031393227
|
57 |
+
56 10:04:25 0 0.0500 0.005900435538364003
|
58 |
+
57 10:04:49 0 0.0500 0.005305763384004237
|
59 |
+
58 10:05:15 1 0.0500 0.005482844688467526
|
60 |
+
59 10:05:40 2 0.0500 0.006185834803064269
|
61 |
+
60 10:06:04 3 0.0500 0.005692241540524938
|
62 |
+
61 10:06:31 4 0.0500 0.005588236063552157
|
63 |
+
62 10:06:54 0 0.0250 0.004684547569865091
|
64 |
+
63 10:07:21 0 0.0250 0.004052906940021382
|
65 |
+
64 10:07:45 1 0.0250 0.00438792720598278
|
66 |
+
65 10:08:10 0 0.0250 0.0036110596380927572
|
67 |
+
66 10:08:34 0 0.0250 0.003521362926455018
|
68 |
+
67 10:08:59 1 0.0250 0.0041407198092575795
|
69 |
+
68 10:09:23 2 0.0250 0.003909185845182846
|
70 |
+
69 10:09:48 3 0.0250 0.004171887944098019
|
71 |
+
70 10:10:13 0 0.0250 0.0033525817751425663
|
72 |
+
71 10:10:37 0 0.0250 0.0033121030555752877
|
73 |
+
72 10:11:01 1 0.0250 0.003853061492842992
|
74 |
+
73 10:11:25 2 0.0250 0.004022790352875278
|
75 |
+
74 10:11:51 3 0.0250 0.0035116070292357774
|
76 |
+
75 10:12:17 0 0.0250 0.003100549348507689
|
77 |
+
76 10:12:43 1 0.0250 0.0036345029288567883
|
78 |
+
77 10:13:10 2 0.0250 0.0035057232098130403
|
79 |
+
78 10:13:35 3 0.0250 0.003761142967476833
|
80 |
+
79 10:14:02 4 0.0250 0.0031668727934154603
|
81 |
+
80 10:14:29 1 0.0125 0.0036585737449783473
|
82 |
+
81 10:14:54 0 0.0125 0.003036957573024784
|
83 |
+
82 10:15:20 1 0.0125 0.0034962114370731055
|
84 |
+
83 10:15:46 2 0.0125 0.0031536131420487894
|
85 |
+
84 10:16:13 3 0.0125 0.0032018311299707564
|
86 |
+
85 10:16:40 4 0.0125 0.003895493801836416
|
87 |
+
86 10:17:05 0 0.0063 0.0028653602050431742
|
88 |
+
87 10:17:29 1 0.0063 0.0031872365007667926
|
89 |
+
88 10:17:54 2 0.0063 0.002925929233518536
|
90 |
+
89 10:18:20 3 0.0063 0.0032362375053917756
|
91 |
+
90 10:18:45 0 0.0063 0.002727499838910293
|
92 |
+
91 10:19:10 1 0.0063 0.0035378607194703183
|
93 |
+
92 10:19:34 0 0.0063 0.0024823026009001287
|
94 |
+
93 10:19:58 1 0.0063 0.0033859749291065993
|
95 |
+
94 10:20:23 2 0.0063 0.002602916180012227
|
96 |
+
95 10:20:47 3 0.0063 0.003145729492406575
|
97 |
+
96 10:21:12 4 0.0063 0.0026840901416120984
|
98 |
+
97 10:21:38 1 0.0031 0.0028548290770653664
|
99 |
+
98 10:22:05 2 0.0031 0.0027221174066091006
|
100 |
+
99 10:22:32 3 0.0031 0.003077857307397596
|
101 |
+
100 10:22:56 4 0.0031 0.002484985417728188
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ced0b96e5269c14364dd434ba56563401ede7054a14088c080cfe55b7843307
|
3 |
+
size 1104819835
|
training.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|