|
import argparse, torch |
|
from transformers import pipeline |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--text", type=str, default=( |
|
"Artificial intelligence is transforming education by enabling personalized learning. " |
|
"Teachers can use AI-driven tools to understand student progress and tailor activities." |
|
)) |
|
parser.add_argument("--max_length", type=int, default=120) |
|
parser.add_argument("--min_length", type=int, default=40) |
|
args = parser.parse_args() |
|
|
|
device = 0 if torch.cuda.is_available() else -1 |
|
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=device) |
|
out = summarizer(args.text, max_length=args.max_length, min_length=args.min_length, do_sample=False) |
|
print(out[0]["summary_text"]) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|