import argparse, torch from transformers import pipeline def main(): parser = argparse.ArgumentParser() parser.add_argument("--text", type=str, default=( "Artificial intelligence is transforming education by enabling personalized learning. " "Teachers can use AI-driven tools to understand student progress and tailor activities." )) parser.add_argument("--max_length", type=int, default=120) parser.add_argument("--min_length", type=int, default=40) args = parser.parse_args() device = 0 if torch.cuda.is_available() else -1 summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=device) out = summarizer(args.text, max_length=args.max_length, min_length=args.min_length, do_sample=False) print(out[0]["summary_text"]) if __name__ == "__main__": main()