Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,11 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
# Model Card for MedDINOv3
|
@@ -9,13 +15,9 @@ MedDINOv3 is a medical vision foundation model pretrained on CT-3M, a collection
|
|
9 |
|
10 |
### Model Description
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
We provide ViT-B-16 pretrained on CT-3M using the three-stage DINOv3 objective.
|
15 |
-
Model type: Vision Transformer, ConvNeXt
|
16 |
-
- **Developed by:** Yuheng Li, Yizhou Wu, Yuxiang Lai, Mingzhe Hu, Xiaofeng Yang
|
17 |
- **Model type:** Vision Transformer
|
18 |
-
- **License:** apache-2.0
|
19 |
|
20 |
### Model Sources
|
21 |
|
@@ -56,8 +58,8 @@ import torch
|
|
56 |
from nnunetv2.training.nnUNetTrainer.dinov3.dinov3.models.vision_transformer import vit_base
|
57 |
|
58 |
# Initialize backbone
|
59 |
-
model = vit_base(drop_path_rate=0.
|
60 |
-
|
61 |
# Load MedDINOv3-CT3M checkpoint
|
62 |
chkpt = torch.load("MedDINOv3-B-CT3M.pth", map_location="cpu")
|
63 |
model.load_state_dict(chkpt, strict=False)
|
@@ -81,4 +83,4 @@ Coverage: Over 100 anatomical structures across abdominal, thoracic, and pelvic
|
|
81 |
year={2025},
|
82 |
url={https://arxiv.org/abs/2509.02379}
|
83 |
}
|
84 |
-
```
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
pipeline_tag: image-segmentation
|
4 |
+
tags:
|
5 |
+
- medical
|
6 |
+
- vision-transformer
|
7 |
+
- dinov3
|
8 |
+
- CT
|
9 |
---
|
10 |
|
11 |
# Model Card for MedDINOv3
|
|
|
15 |
|
16 |
### Model Description
|
17 |
|
18 |
+
We provide ViT-B-16 pretrained on CT-3M using the three-stage DINOv3 objective.
|
19 |
+
- **Developed by:** Yuheng Li, Yizhou Wu, Yuxiang Lai, Mingzhe Hu, Xiaofeng Yang
|
|
|
|
|
|
|
20 |
- **Model type:** Vision Transformer
|
|
|
21 |
|
22 |
### Model Sources
|
23 |
|
|
|
58 |
from nnunetv2.training.nnUNetTrainer.dinov3.dinov3.models.vision_transformer import vit_base
|
59 |
|
60 |
# Initialize backbone
|
61 |
+
model = vit_base(drop_path_rate=0.0, layerscale_init=1.0e-05, n_storage_tokens=4,
|
62 |
+
qkv_bias = False, mask_k_bias= True)
|
63 |
# Load MedDINOv3-CT3M checkpoint
|
64 |
chkpt = torch.load("MedDINOv3-B-CT3M.pth", map_location="cpu")
|
65 |
model.load_state_dict(chkpt, strict=False)
|
|
|
83 |
year={2025},
|
84 |
url={https://arxiv.org/abs/2509.02379}
|
85 |
}
|
86 |
+
```
|