ricklisz123 commited on
Commit
20d233b
·
verified ·
1 Parent(s): f4d2faf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -9
README.md CHANGED
@@ -1,5 +1,11 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
3
  ---
4
 
5
  # Model Card for MedDINOv3
@@ -9,13 +15,9 @@ MedDINOv3 is a medical vision foundation model pretrained on CT-3M, a collection
9
 
10
  ### Model Description
11
 
12
- <!-- Provide a longer summary of what this model is. -->
13
-
14
- We provide ViT-B-16 pretrained on CT-3M using the three-stage DINOv3 objective.
15
- Model type: Vision Transformer, ConvNeXt
16
- - **Developed by:** Yuheng Li, Yizhou Wu, Yuxiang Lai, Mingzhe Hu, Xiaofeng Yang
17
  - **Model type:** Vision Transformer
18
- - **License:** apache-2.0
19
 
20
  ### Model Sources
21
 
@@ -56,8 +58,8 @@ import torch
56
  from nnunetv2.training.nnUNetTrainer.dinov3.dinov3.models.vision_transformer import vit_base
57
 
58
  # Initialize backbone
59
- model = vit_base(drop_path_rate=0.2, layerscale_init=1e-5)
60
-
61
  # Load MedDINOv3-CT3M checkpoint
62
  chkpt = torch.load("MedDINOv3-B-CT3M.pth", map_location="cpu")
63
  model.load_state_dict(chkpt, strict=False)
@@ -81,4 +83,4 @@ Coverage: Over 100 anatomical structures across abdominal, thoracic, and pelvic
81
  year={2025},
82
  url={https://arxiv.org/abs/2509.02379}
83
  }
84
- ```
 
1
  ---
2
  license: apache-2.0
3
+ pipeline_tag: image-segmentation
4
+ tags:
5
+ - medical
6
+ - vision-transformer
7
+ - dinov3
8
+ - CT
9
  ---
10
 
11
  # Model Card for MedDINOv3
 
15
 
16
  ### Model Description
17
 
18
+ We provide ViT-B-16 pretrained on CT-3M using the three-stage DINOv3 objective.
19
+ - **Developed by:** Yuheng Li, Yizhou Wu, Yuxiang Lai, Mingzhe Hu, Xiaofeng Yang
 
 
 
20
  - **Model type:** Vision Transformer
 
21
 
22
  ### Model Sources
23
 
 
58
  from nnunetv2.training.nnUNetTrainer.dinov3.dinov3.models.vision_transformer import vit_base
59
 
60
  # Initialize backbone
61
+ model = vit_base(drop_path_rate=0.0, layerscale_init=1.0e-05, n_storage_tokens=4,
62
+ qkv_bias = False, mask_k_bias= True)
63
  # Load MedDINOv3-CT3M checkpoint
64
  chkpt = torch.load("MedDINOv3-B-CT3M.pth", map_location="cpu")
65
  model.load_state_dict(chkpt, strict=False)
 
83
  year={2025},
84
  url={https://arxiv.org/abs/2509.02379}
85
  }
86
+ ```