File size: 9,548 Bytes
9a67fbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import torch
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
import numpy as np
import os
from datetime import datetime
from pathlib import Path
# polyatomic
from torch.amp.autocast_mode import autocast
ROOT = Path(__file__).parent.parent.resolve().__str__()
LOG_ROOT = Path(ROOT + "/" + "logs_hyperparameter")
if not os.path.exists(LOG_ROOT):
os.makedirs(LOG_ROOT, exist_ok=False)
def setup_log_file(model_name, rep_name, dataset_name):
from pathlib import Path
from datetime import datetime
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
fname = f"{model_name}_{rep_name}_{dataset_name}_{timestamp}.txt"
parent = Path(__file__).parent.parent.resolve().__str__()
log_dir = Path(parent + "/" + "logs_hyperparameter")
if not os.path.exists(log_dir):
os.makedirs(LOG_ROOT, exist_ok=False)
log_path = log_dir / fname
print(f"[Logging] Writing to: {log_path}")
return open(log_path, "w")
def write_log(log_file, text):
print(text)
log_file.write(text + "\n")
log_file.flush()
def train_gnn_model(model, loader, optimizer, log_file, loss_fn=torch.nn.MSELoss()):
total_loss = 0
for _ in range(20):
model.train()
total_loss = 0
for batch in loader:
batch = batch.to(next(model.parameters()).device)
optimizer.zero_grad()
out = model(batch).squeeze()
loss = loss_fn(out, batch.y)
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(loader)
write_log(log_file, f"GNN Train Loss: {avg_loss:.4f}")
return avg_loss
def eval_gnn_model(model, loader, log_file, scaler, return_preds=False):
model.eval()
y_true, y_pred = [], []
with torch.no_grad():
for batch in tqdm(loader, desc="Evaluating GNN"):
batch = batch.to(next(model.parameters()).device)
out = model(batch).view(-1)
y_true.append(batch.y.cpu())
y_pred.append(out.cpu())
y_true = scaler.inverse_transform(torch.cat(y_true).numpy().reshape(-1, 1)).ravel()
y_pred = scaler.inverse_transform(torch.cat(y_pred).numpy().reshape(-1, 1)).ravel()
metrics = report_metrics(y_true, y_pred, log_file)
if return_preds:
return metrics, y_true, y_pred
return metrics
def train_gp_model(gp_model, X_train, y_train, log_file):
write_log(log_file, "Training GP model...")
gp_model.fit(X_train, y_train)
return gp_model
def eval_gp_model(gp_model, X_test, y_test, log_file, scaler, return_preds=False):
write_log(log_file, "Evaluating GP model...")
y_pred, _ = gp_model.predict(X_test)
y_test = scaler.inverse_transform(y_test.reshape(-1, 1)).ravel()
y_pred = scaler.inverse_transform(y_pred.reshape(-1, 1)).ravel()
metrics = report_metrics(y_test, y_pred, log_file)
if return_preds:
return metrics, y_test, y_pred
return metrics
def report_metrics(y_true, y_pred, log_file):
rmse = np.sqrt(mean_squared_error(y_true, y_pred))
mae = mean_absolute_error(y_true, y_pred)
r2 = r2_score(y_true, y_pred)
write_log(log_file, f"RMSE: {rmse:.4f}, MAE: {mae:.4f}, R2: {r2:.4f}")
return {"rmse": rmse, "mae": mae, "r2": r2}
def bootstrap_ci(arr, n_boot=1000, ci=95):
boot_means = [
np.mean(np.random.choice(arr, size=len(arr), replace=True))
for _ in range(n_boot)
]
lower = np.percentile(boot_means, (100 - ci) / 2)
upper = np.percentile(boot_means, 100 - (100 - ci) / 2)
return np.mean(boot_means), (lower, upper)
def bootstrap_metric_ci(metric_fn, y_true, y_pred, n_boot=1000, ci=95, rng=None):
rng = np.random.default_rng(rng)
y_true = np.asarray(y_true)
y_pred = np.asarray(y_pred)
n = len(y_true)
boot_vals = []
for _ in range(n_boot):
idx = rng.choice(n, n, replace=True)
boot_vals.append(metric_fn(y_true[idx], y_pred[idx]))
mean_val = np.mean(boot_vals)
lo, hi = np.percentile(boot_vals, [(100 - ci) / 2, 100 - (100 - ci) / 2])
return mean_val, (lo, hi)
def train_polyatomic(
model, loader, optimizer, loss_fn, scaler_grad, device, scheduler, accum_steps=1
):
"""
custom training loop for polyatomic GNNs
uses mixed precision training with autocast
accum_steps allows gradient accumulation for larger effective batch size
this was designed for GPU training, but here is in CPU mode
"""
use_amp = torch.cuda.is_available()
for _ in range(20):
model.train()
total_loss = 0.0
optimizer.zero_grad()
for i, batch in enumerate(loader):
batch = batch.to(device)
batch.x = batch.x.float()
batch.edge_attr = batch.edge_attr.float()
batch.graph_feats = batch.graph_feats.float()
batch.y = batch.y.float()
if use_amp:
with autocast(device_type="cuda", dtype=torch.float16):
output = model(batch)
loss = loss_fn(output, batch.y.view(-1)) / accum_steps
else:
output = model(batch)
loss = loss_fn(output, batch.y.view(-1)) / accum_steps
if use_amp:
scaler_grad.scale(loss).backward()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
if (i + 1) % accum_steps == 0 or (i + 1 == len(loader)):
if use_amp:
scaler_grad.step(optimizer)
scaler_grad.update()
else:
optimizer.step()
optimizer.zero_grad()
total_loss += loss.item() * batch.num_graphs * accum_steps
avg_loss = total_loss / len(loader.dataset)
if scheduler is not None:
scheduler.step(avg_loss)
return model
def evaluate_polyatomic(model, loader, device, log_file, scaler, return_preds=False):
"""
uses autocast for mixed precision evaluation
this was designed for GPU training, but here is in CPU mode
"""
model.eval()
preds, trues = [], []
with torch.no_grad(), autocast(
device_type="cpu", dtype=torch.float16
): # change to 'cuda' if using GPU
for batch in loader:
batch = batch.to(device)
out = model(batch)
preds.append(out.view(-1))
trues.append(batch.y.view(-1))
y_pred = torch.cat(preds)
y_test = torch.cat(trues)
y_pred = scaler.inverse_transform(y_pred.numpy().reshape(-1, 1)).ravel()
y_test = scaler.inverse_transform(y_test.numpy().reshape(-1, 1)).ravel()
metrics = report_metrics(y_test, y_pred, log_file)
if return_preds:
return metrics, y_test, y_pred
return metrics
def k_fold_eval(
train_fn,
eval_fn,
X_train,
y_train,
model_name,
rep_name,
dataset_name,
X_test,
y_test,
k=5,
seed=42,
log_file=None,
):
log_file = setup_log_file(model_name, rep_name, dataset_name)
write_log(log_file, f"Experiment: {model_name}+{rep_name} on {dataset_name}")
kf = KFold(n_splits=k, shuffle=True, random_state=seed)
fold_metrics, fold_models = [], []
for fold, (tr_idx, val_idx) in enumerate(kf.split(X_train)):
write_log(log_file, f"\nFOLD {fold+1}/{k}")
X_tr, X_val = X_train[tr_idx], X_train[val_idx]
y_tr, y_val = y_train[tr_idx], y_train[val_idx]
scaler = StandardScaler()
y_tr_s = scaler.fit_transform(y_tr.reshape(-1, 1)).ravel()
y_val_s = scaler.transform(y_val.reshape(-1, 1)).ravel()
model = train_fn(X_tr, y_tr_s, log_file)
m = eval_fn(model, X_val, y_val_s, log_file, scaler)
fold_metrics.append(m)
fold_models.append((model, m["rmse"]))
write_log(log_file, "\n====== K-FOLD SUMMARY ======")
for key in fold_metrics[0]:
vals = [m[key] for m in fold_metrics]
mean, (lo, hi) = bootstrap_ci(vals)
write_log(log_file, f"{key.upper()}: {mean:.4f} [{lo:.4f}, {hi:.4f}]")
best_idx = np.argmin([rm for (_, rm) in fold_models])
best_model = fold_models[best_idx][0]
write_log(log_file, f"\n★ Using fold {best_idx+1} model for test inference")
test_scaler = StandardScaler().fit(y_train.reshape(-1, 1))
y_test_s = test_scaler.transform(y_test.reshape(-1, 1)).ravel()
test_metrics, y_true_test, y_pred_test = eval_fn(
best_model, X_test, y_test_s, log_file, test_scaler, return_preds=True
)
write_log(log_file, f"\n====== HELD-OUT TEST METRICS ======\n{test_metrics}")
rmse_mean, (rmse_lo, rmse_hi) = bootstrap_metric_ci(
lambda a, b: np.sqrt(mean_squared_error(a, b)), y_true_test, y_pred_test
)
mae_mean, (mae_lo, mae_hi) = bootstrap_metric_ci(
mean_absolute_error, y_true_test, y_pred_test
)
r2_mean, (r2_lo, r2_hi) = bootstrap_metric_ci(r2_score, y_true_test, y_pred_test)
write_log(
log_file,
f"Test RMSE: {rmse_mean:.4f} (95 % CI: {rmse_lo:.4f}–{rmse_hi:.4f})\n",
)
write_log(
log_file,
f"Test MAE : {mae_mean :.4f} (95 % CI: {mae_lo :.4f}–{mae_hi :.4f})\n",
)
write_log(
log_file,
f"Test R² : {r2_mean :.4f} (95 % CI: {r2_lo :.4f}–{r2_hi :.4f})\n",
)
log_file.close()
return fold_metrics, test_metrics
|