File size: 9,548 Bytes
9a67fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import torch
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
import numpy as np
import os
from datetime import datetime
from pathlib import Path

# polyatomic
from torch.amp.autocast_mode import autocast

ROOT = Path(__file__).parent.parent.resolve().__str__()
LOG_ROOT = Path(ROOT + "/" + "logs_hyperparameter")
if not os.path.exists(LOG_ROOT):
    os.makedirs(LOG_ROOT, exist_ok=False)


def setup_log_file(model_name, rep_name, dataset_name):
    from pathlib import Path
    from datetime import datetime

    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    fname = f"{model_name}_{rep_name}_{dataset_name}_{timestamp}.txt"
    parent = Path(__file__).parent.parent.resolve().__str__()
    log_dir = Path(parent + "/" + "logs_hyperparameter")
    if not os.path.exists(log_dir):
        os.makedirs(LOG_ROOT, exist_ok=False)

    log_path = log_dir / fname
    print(f"[Logging] Writing to: {log_path}")
    return open(log_path, "w")


def write_log(log_file, text):
    print(text)
    log_file.write(text + "\n")
    log_file.flush()


def train_gnn_model(model, loader, optimizer, log_file, loss_fn=torch.nn.MSELoss()):
    total_loss = 0
    for _ in range(20):
        model.train()
        total_loss = 0
        for batch in loader:
            batch = batch.to(next(model.parameters()).device)
            optimizer.zero_grad()
            out = model(batch).squeeze()
            loss = loss_fn(out, batch.y)
            loss.backward()
            optimizer.step()
            total_loss += loss.item()
    avg_loss = total_loss / len(loader)
    write_log(log_file, f"GNN Train Loss: {avg_loss:.4f}")
    return avg_loss


def eval_gnn_model(model, loader, log_file, scaler, return_preds=False):
    model.eval()
    y_true, y_pred = [], []
    with torch.no_grad():
        for batch in tqdm(loader, desc="Evaluating GNN"):
            batch = batch.to(next(model.parameters()).device)
            out = model(batch).view(-1)
            y_true.append(batch.y.cpu())
            y_pred.append(out.cpu())
    y_true = scaler.inverse_transform(torch.cat(y_true).numpy().reshape(-1, 1)).ravel()
    y_pred = scaler.inverse_transform(torch.cat(y_pred).numpy().reshape(-1, 1)).ravel()
    metrics = report_metrics(y_true, y_pred, log_file)
    if return_preds:
        return metrics, y_true, y_pred
    return metrics


def train_gp_model(gp_model, X_train, y_train, log_file):
    write_log(log_file, "Training GP model...")
    gp_model.fit(X_train, y_train)
    return gp_model


def eval_gp_model(gp_model, X_test, y_test, log_file, scaler, return_preds=False):
    write_log(log_file, "Evaluating GP model...")
    y_pred, _ = gp_model.predict(X_test)
    y_test = scaler.inverse_transform(y_test.reshape(-1, 1)).ravel()
    y_pred = scaler.inverse_transform(y_pred.reshape(-1, 1)).ravel()
    metrics = report_metrics(y_test, y_pred, log_file)
    if return_preds:
        return metrics, y_test, y_pred
    return metrics


def report_metrics(y_true, y_pred, log_file):
    rmse = np.sqrt(mean_squared_error(y_true, y_pred))
    mae = mean_absolute_error(y_true, y_pred)
    r2 = r2_score(y_true, y_pred)
    write_log(log_file, f"RMSE: {rmse:.4f}, MAE: {mae:.4f}, R2: {r2:.4f}")
    return {"rmse": rmse, "mae": mae, "r2": r2}


def bootstrap_ci(arr, n_boot=1000, ci=95):
    boot_means = [
        np.mean(np.random.choice(arr, size=len(arr), replace=True))
        for _ in range(n_boot)
    ]
    lower = np.percentile(boot_means, (100 - ci) / 2)
    upper = np.percentile(boot_means, 100 - (100 - ci) / 2)
    return np.mean(boot_means), (lower, upper)


def bootstrap_metric_ci(metric_fn, y_true, y_pred, n_boot=1000, ci=95, rng=None):
    rng = np.random.default_rng(rng)
    y_true = np.asarray(y_true)
    y_pred = np.asarray(y_pred)
    n = len(y_true)
    boot_vals = []
    for _ in range(n_boot):
        idx = rng.choice(n, n, replace=True)
        boot_vals.append(metric_fn(y_true[idx], y_pred[idx]))
    mean_val = np.mean(boot_vals)
    lo, hi = np.percentile(boot_vals, [(100 - ci) / 2, 100 - (100 - ci) / 2])
    return mean_val, (lo, hi)


def train_polyatomic(
    model, loader, optimizer, loss_fn, scaler_grad, device, scheduler, accum_steps=1
):
    """
    custom training loop for polyatomic GNNs
    uses mixed precision training with autocast
    accum_steps allows gradient accumulation for larger effective batch size
    this was designed for GPU training, but here is in CPU mode
    """
    use_amp = torch.cuda.is_available()
    for _ in range(20):
        model.train()
        total_loss = 0.0
        optimizer.zero_grad()

        for i, batch in enumerate(loader):
            batch = batch.to(device)
            batch.x = batch.x.float()
            batch.edge_attr = batch.edge_attr.float()
            batch.graph_feats = batch.graph_feats.float()
            batch.y = batch.y.float()

            if use_amp:
                with autocast(device_type="cuda", dtype=torch.float16):
                    output = model(batch)
                    loss = loss_fn(output, batch.y.view(-1)) / accum_steps
            else:
                output = model(batch)
                loss = loss_fn(output, batch.y.view(-1)) / accum_steps

            if use_amp:
                scaler_grad.scale(loss).backward()
            else:
                loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

            if (i + 1) % accum_steps == 0 or (i + 1 == len(loader)):
                if use_amp:
                    scaler_grad.step(optimizer)
                    scaler_grad.update()
                else:
                    optimizer.step()

                optimizer.zero_grad()

            total_loss += loss.item() * batch.num_graphs * accum_steps

        avg_loss = total_loss / len(loader.dataset)
        if scheduler is not None:
            scheduler.step(avg_loss)

    return model


def evaluate_polyatomic(model, loader, device, log_file, scaler, return_preds=False):
    """
    uses autocast for mixed precision evaluation
    this was designed for GPU training, but here is in CPU mode
    """
    model.eval()
    preds, trues = [], []
    with torch.no_grad(), autocast(
        device_type="cpu", dtype=torch.float16
    ):  # change to 'cuda' if using GPU
        for batch in loader:
            batch = batch.to(device)
            out = model(batch)
            preds.append(out.view(-1))
            trues.append(batch.y.view(-1))
    y_pred = torch.cat(preds)
    y_test = torch.cat(trues)
    y_pred = scaler.inverse_transform(y_pred.numpy().reshape(-1, 1)).ravel()
    y_test = scaler.inverse_transform(y_test.numpy().reshape(-1, 1)).ravel()
    metrics = report_metrics(y_test, y_pred, log_file)
    if return_preds:
        return metrics, y_test, y_pred
    return metrics


def k_fold_eval(
    train_fn,
    eval_fn,
    X_train,
    y_train,
    model_name,
    rep_name,
    dataset_name,
    X_test,
    y_test,
    k=5,
    seed=42,
    log_file=None,
):
    log_file = setup_log_file(model_name, rep_name, dataset_name)
    write_log(log_file, f"Experiment: {model_name}+{rep_name} on {dataset_name}")

    kf = KFold(n_splits=k, shuffle=True, random_state=seed)
    fold_metrics, fold_models = [], []

    for fold, (tr_idx, val_idx) in enumerate(kf.split(X_train)):
        write_log(log_file, f"\nFOLD {fold+1}/{k}")
        X_tr, X_val = X_train[tr_idx], X_train[val_idx]
        y_tr, y_val = y_train[tr_idx], y_train[val_idx]

        scaler = StandardScaler()
        y_tr_s = scaler.fit_transform(y_tr.reshape(-1, 1)).ravel()
        y_val_s = scaler.transform(y_val.reshape(-1, 1)).ravel()

        model = train_fn(X_tr, y_tr_s, log_file)
        m = eval_fn(model, X_val, y_val_s, log_file, scaler)
        fold_metrics.append(m)
        fold_models.append((model, m["rmse"]))

    write_log(log_file, "\n====== K-FOLD SUMMARY ======")
    for key in fold_metrics[0]:
        vals = [m[key] for m in fold_metrics]
        mean, (lo, hi) = bootstrap_ci(vals)
        write_log(log_file, f"{key.upper()}: {mean:.4f}  [{lo:.4f}, {hi:.4f}]")

    best_idx = np.argmin([rm for (_, rm) in fold_models])
    best_model = fold_models[best_idx][0]
    write_log(log_file, f"\n★ Using fold {best_idx+1} model for test inference")

    test_scaler = StandardScaler().fit(y_train.reshape(-1, 1))
    y_test_s = test_scaler.transform(y_test.reshape(-1, 1)).ravel()
    test_metrics, y_true_test, y_pred_test = eval_fn(
        best_model, X_test, y_test_s, log_file, test_scaler, return_preds=True
    )

    write_log(log_file, f"\n====== HELD-OUT TEST METRICS ======\n{test_metrics}")
    rmse_mean, (rmse_lo, rmse_hi) = bootstrap_metric_ci(
        lambda a, b: np.sqrt(mean_squared_error(a, b)), y_true_test, y_pred_test
    )
    mae_mean, (mae_lo, mae_hi) = bootstrap_metric_ci(
        mean_absolute_error, y_true_test, y_pred_test
    )
    r2_mean, (r2_lo, r2_hi) = bootstrap_metric_ci(r2_score, y_true_test, y_pred_test)
    write_log(
        log_file,
        f"Test RMSE: {rmse_mean:.4f}  (95 % CI: {rmse_lo:.4f}{rmse_hi:.4f})\n",
    )
    write_log(
        log_file,
        f"Test MAE : {mae_mean :.4f}  (95 % CI: {mae_lo :.4f}{mae_hi :.4f})\n",
    )
    write_log(
        log_file,
        f"Test R²  : {r2_mean  :.4f}  (95 % CI: {r2_lo  :.4f}{r2_hi  :.4f})\n",
    )
    log_file.close()
    return fold_metrics, test_metrics