| --- OUTER FOLD 1/5 --- | |
| INFO: Best params for fold 1: {'lr': 0.0007618320309633699, 'hidden_dim': 256, 'batch_size': 32} | |
| INFO: Fold 1 Val RMSE: 2.2127, MAE: 1.5927 | |
| --- OUTER FOLD 2/5 --- | |
| INFO: Best params for fold 2: {'lr': 0.0007618320309633699, 'hidden_dim': 256, 'batch_size': 32} | |
| INFO: Fold 2 Val RMSE: 2.2458, MAE: 1.3054 | |
| --- OUTER FOLD 3/5 --- | |
| INFO: Best params for fold 3: {'lr': 0.0006745255603940729, 'hidden_dim': 128, 'batch_size': 64} | |
| INFO: Fold 3 Val RMSE: 1.9295, MAE: 1.2238 | |
| --- OUTER FOLD 4/5 --- | |
| INFO: Best params for fold 4: {'lr': 0.0005205409661999493, 'hidden_dim': 64, 'batch_size': 64} | |
| INFO: Fold 4 Val RMSE: 1.6327, MAE: 1.2448 | |
| --- OUTER FOLD 5/5 --- | |
| INFO: Best params for fold 5: {'lr': 0.0008903488639350984, 'hidden_dim': 64, 'batch_size': 64} | |
| INFO: Fold 5 Val RMSE: 1.8799, MAE: 1.2514 | |
| ------ Nested Cross-Validation Summary ------ | |
| Unbiased Validation RMSE: 1.9801 ± 0.2271 | |
| Unbiased Validation MAE: 1.3236 ± 0.1372 | |
| VAL FOLD RMSEs: [2.2126997, 2.2457836, 1.9294776, 1.6327468, 1.8798636] | |
| VAL FOLD MAEs: [1.5927358, 1.3054308, 1.2238004, 1.244778, 1.2513678] | |
| ===== STEP 2: Final Model Training & Testing ===== | |
| INFO: Finding best hyperparameters on the FULL train/val set for final model... | |
| INFO: Optimal hyperparameters for final model: {'lr': 0.0006175439707655367, 'hidden_dim': 128, 'batch_size': 64} | |
| INFO: Training final model... | |
| ===== STEP 3: Final Held-Out Test Evaluation ===== | |
| Test RMSE: 2.5364 (95% CI: [1.8584, 3.3588]) | |
| Test MAE: 1.7257 (95% CI: [1.4286, 2.0974]) | |