| --- OUTER FOLD 1/5 --- | |
| INFO: Best params for fold 1: {'lr': 0.0007618320309633699, 'hidden_dim': 256, 'batch_size': 32} | |
| INFO: Fold 1 Val RMSE: 3.3294, MAE: 2.5934 | |
| --- OUTER FOLD 2/5 --- | |
| INFO: Best params for fold 2: {'lr': 0.0007618320309633699, 'hidden_dim': 256, 'batch_size': 32} | |
| INFO: Fold 2 Val RMSE: 2.1021, MAE: 1.4849 | |
| --- OUTER FOLD 3/5 --- | |
| INFO: Best params for fold 3: {'lr': 0.0007618320309633699, 'hidden_dim': 256, 'batch_size': 32} | |
| INFO: Fold 3 Val RMSE: 2.2756, MAE: 1.8204 | |
| --- OUTER FOLD 4/5 --- | |
| INFO: Best params for fold 4: {'lr': 0.0007618320309633699, 'hidden_dim': 256, 'batch_size': 32} | |
| INFO: Fold 4 Val RMSE: 2.4069, MAE: 1.7527 | |
| --- OUTER FOLD 5/5 --- | |
| INFO: Best params for fold 5: {'lr': 0.0007618320309633699, 'hidden_dim': 256, 'batch_size': 32} | |
| INFO: Fold 5 Val RMSE: 2.3778, MAE: 1.6050 | |
| ------ Nested Cross-Validation Summary ------ | |
| Unbiased Validation RMSE: 2.4984 ± 0.4290 | |
| Unbiased Validation MAE: 1.8513 ± 0.3889 | |
| VAL FOLD RMSEs: [3.3293865, 2.1021073, 2.2756133, 2.4068606, 2.3777907] | |
| VAL FOLD MAEs: [2.5933583, 1.4848744, 1.8203533, 1.7527055, 1.6049908] | |
| ===== STEP 2: Final Model Training & Testing ===== | |
| INFO: Finding best hyperparameters on the FULL train/val set for final model... | |
| INFO: Optimal hyperparameters for final model: {'lr': 0.000756755929227675, 'hidden_dim': 64, 'batch_size': 64} | |
| INFO: Training final model... | |
| ===== STEP 3: Final Held-Out Test Evaluation ===== | |
| Test RMSE: 3.7786 (95% CI: [2.9765, 4.6493]) | |
| Test MAE: 2.7625 (95% CI: [2.3608, 3.2216]) | |