| --- OUTER FOLD 1/5 --- | |
| INFO: Best params for fold 1: {'lr': 0.0007618320309633699, 'hidden_dim': 256, 'batch_size': 32} | |
| INFO: Fold 1 Val RMSE: 0.7011, MAE: 0.5719 | |
| --- OUTER FOLD 2/5 --- | |
| INFO: Best params for fold 2: {'lr': 0.0007618320309633699, 'hidden_dim': 256, 'batch_size': 32} | |
| INFO: Fold 2 Val RMSE: 0.7555, MAE: 0.5825 | |
| --- OUTER FOLD 3/5 --- | |
| INFO: Best params for fold 3: {'lr': 0.0006175439707655367, 'hidden_dim': 128, 'batch_size': 64} | |
| INFO: Fold 3 Val RMSE: 0.7636, MAE: 0.5893 | |
| --- OUTER FOLD 4/5 --- | |
| INFO: Best params for fold 4: {'lr': 0.0007303755012255117, 'hidden_dim': 128, 'batch_size': 32} | |
| INFO: Fold 4 Val RMSE: 0.8021, MAE: 0.6038 | |
| --- OUTER FOLD 5/5 --- | |
| INFO: Best params for fold 5: {'lr': 0.0006745255603940729, 'hidden_dim': 128, 'batch_size': 64} | |
| INFO: Fold 5 Val RMSE: 0.7968, MAE: 0.6121 | |
| ------ Nested Cross-Validation Summary ------ | |
| Unbiased Validation RMSE: 0.7638 ± 0.0362 | |
| Unbiased Validation MAE: 0.5919 ± 0.0144 | |
| VAL FOLD RMSEs: [0.7011157, 0.75546557, 0.76357734, 0.802132, 0.7967714] | |
| VAL FOLD MAEs: [0.57191694, 0.5825049, 0.5892569, 0.6037811, 0.61209196] | |
| ===== STEP 2: Final Model Training & Testing ===== | |
| INFO: Finding best hyperparameters on the FULL train/val set for final model... | |
| INFO: Optimal hyperparameters for final model: {'lr': 0.0007618320309633699, 'hidden_dim': 256, 'batch_size': 32} | |
| INFO: Training final model... | |
| ===== STEP 3: Final Held-Out Test Evaluation ===== | |
| Test RMSE: 0.7840 (95% CI: [0.7054, 0.8604]) | |
| Test MAE: 0.6036 (95% CI: [0.5563, 0.6525]) | |