File size: 13,878 Bytes
6cf3348
 
 
 
 
 
 
 
 
 
 
 
 
3e37441
6cf3348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e37441
6cf3348
 
 
 
 
 
 
 
 
 
 
 
 
3e37441
 
 
6cf3348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import argparse
import random
import glob
import json
from collections import Counter
from vllm import LLM, SamplingParams
import torch
from tqdm import tqdm
import re
import sys
import os
import numpy as np

few_shot_string = """Question: Find the domain of the expression $\frac{\sqrt{x-2}}{\sqrt{5-x}}$.}
Let's think step by step. The expressions inside each square root must be non-negative. Therefore, $x-2 \ge 0$, so $x\ge2$, and $5 - x \ge 0$, so $x \le 5$. Also, the denominator cannot be equal to zero, so $5-x>0$, which gives $x<5$. Therefore, the domain of the expression is $[2,5)$. Final Answer: The answer is $[2,5)$. I hope it is correct.

Question: If $\det \mathbf{A} = 2$ and $\det \mathbf{B} = 12,$ then find $\det (\mathbf{A} \mathbf{B}).$
Let's think step by step. We have that $\det (\mathbf{A} \mathbf{B}) = (\det \mathbf{A})(\det \mathbf{B}) = (2)(12) = 24.$ Final Answer: The answer is $24$. I hope it is correct.

Question: Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how many times must Terrell lift them in order to lift the same total weight?
Let's think step by step. If Terrell lifts two 20-pound weights 12 times, he lifts a total of $2\cdot 12\cdot20=480$ pounds of weight. If he lifts two 15-pound weights instead for $n$ times, he will lift a total of $2\cdot15\cdot n=30n$ pounds of weight. Equating this to 480 pounds, we can solve for $n$:\begin{align*}
30n&=480\
\Rightarrow\qquad n&=480/30=16
\end{align*}
Final Answer: The answer is $16$. I hope it is correct.

Question: If the system of equations

\begin{align*}
6x-4y&=a,\
6y-9x &=b.
\end{align*}
has a solution $(x, y)$ where $x$ and $y$ are both nonzero, find $\frac{a}{b},$ assuming $b$ is nonzero.
Let's think step by step. If we multiply the first equation by $-\frac{3}{2}$, we obtain $$6y-9x=-\frac{3}{2}a.$$Since we also know that $6y-9x=b$, we have
$$-\frac{3}{2}a=b\Rightarrow\frac{a}{b}=-\frac{2}{3}.$$
Final Answer: The answer is $-\frac{2}{3}$. I hope it is correct.

"""

PROMPT_DICT = {
    "lean4": (
        "Statement and proof in natural language:\n\n"
        "statement:\n{nl_statement}\n\n"
        "proof:\n{nl_proof}\n\n"
        "Translate the statement and proof in natural language to lean4:"
    ),
    "prompt_no_input": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response:"
    ),
    "old_prompt_bd": """Question: {question}
Let's think step by step.""",
    "vallina": """{question}""",
}


def batchify(pairs, batch_size):
    """将列表分成指定大小的批次"""
    for i in range(0, len(pairs), batch_size):
        yield pairs[i : i + batch_size]


def generate_prompts(questions, args):
    """为每个问题生成提示"""
    prompts = [generate_prompt_generation(args, question) for question in questions]
    return prompts


def generate_prompt_generation(args, question):
    if args.method == "zero_shot_cot":
        content = question + " Let's think step by step."
    elif args.method == "zero_shot":
        content = question
    else:
        raise ValueError("we do not method for such model type yet")

    if "generator" not in args.model_type:
        MODEL_DICT = {
            "llama": ("[INST] \n{content}\n [/INST]"),
            "mistral": ("<s>[INST] {content} [/INST]"),
            "chatglm": ("<|user|> \n{content}\n <|assistant|>"),
            "qianwen": (
                "<|im_start|>user\n{content}<|im_end|>\n<|im_start|>assistant\n"
            ),
            "deepseek-math": ("User: {content}\n\nAssistant: "),
            "internlm2-math": ("<|im_start|>system\n{content}<|im_end|>\n"),
            "llemma": (
                "### System Prompt\nYou are an intelligent mathematical assistant.\n\n### User Message\n{content}\n\n### Assistant"
            ),
        }

        if args.model_type in ["qianwen", "qianwen-13b", "qianwen-70b"]:
            content = MODEL_DICT["qianwen"].format_map({"content": content})

        elif args.model_type in ["chatglm", "deepseek-math-7b-base"]:
            pass

        elif args.model_type in ["llama2-7b-chat"]:
            content = MODEL_DICT["llama"].format_map({"content": content})

        elif args.model_type in ["mistral", "mixtral", "Mistral-7B-Instruct-v0.2"]:
            content = MODEL_DICT["mistral"].format_map({"content": content})

        elif args.model_type in ["internlm2-math-20b", "internlm2-math-7b"]:
            content = MODEL_DICT["internlm2-math"].format_map({"content": content})
        elif args.model_type in ["llemma_34b", "llemma_7b"]:
            content = MODEL_DICT["llemma"].format_map({"content": content})
        elif args.model_type in ["deepseek-math-7b-instruct"]:
            content = MODEL_DICT["deepseek-math"].format_map({"content": content})

    return content


def self_consistency(pairs):
    val_counts = Counter(value for key, value in pairs)
    most = val_counts.most_common(1)[0][0]
    for key, value in pairs:
        if value == most:
            return key


def str2bool(s):
    s = s.lower()
    if s == "true":
        return True
    elif s == "false":
        return False
    else:
        raise ValueError("invalid value: {}, must be true or false".format(s))


def parse_arguments():
    parser = argparse.ArgumentParser(description="Zero-shot-CoT")

    # parser.add_argument(
    #     "--dataset", type=str, default="plan",
    #     choices=["plan", 'tool_use_awareness', 'tool_selection', 'tool_selection_harder', 'tool_creation_awareness',
    #              'tool_creation_awareness_harder', 'tool_creation',
    #              'arguments_filling'], help="dataset used for experiment")
    parser.add_argument(
        "--cot_trigger_no",
        type=int,
        default=1,
        help="A trigger sentence that elicits a model to execute chain of thought",
    )
    parser.add_argument("--dataset", type=str, default="")
    parser.add_argument("--data_path", type=str, default="")
    parser.add_argument("--batch_size", type=int, default=1)
    parser.add_argument("--eval_method", type=str, default="")

    parser.add_argument("--model_path", type=str, default="")
    parser.add_argument("--model_type", type=str, default="chatglm")

    parser.add_argument("--output_dir", type=str, default="generation_test")

    parser.add_argument("--lora_path", type=str, default="")

    parser.add_argument("--method", type=str, default="few_shot_cot")
    parser.add_argument("--data_question_key", type=str, default="question")
    parser.add_argument("--data_answer_key", type=str, default="answer")

    parser.add_argument("--sample_num", type=int, default=1)

    parser.add_argument("--cuda_ind", type=int, default=0)
    parser.add_argument("--tensor_parallel", type=int, default=1)
    parser.add_argument("--cuda_start", type=int, default=0)
    parser.add_argument("--cuda_num", type=int, default=8)

    parser.add_argument("--load_in_8bit", type=str2bool, default=False)
    parser.add_argument("--rewrite", type=str2bool, default=False)

    parser.add_argument("--use_typewriter", type=int, default=0)

    parser.add_argument("--temperature", type=float, default=0.0)
    parser.add_argument("--top_p", type=float, default=1)
    parser.add_argument("--iter_max_new_tokens", type=int, default=512)
    parser.add_argument("--init_max_new_tokens", type=int, default=2048)
    parser.add_argument("--min_new_tokens", type=int, default=1)
    parser.add_argument(
        "--correct_response_format", type=str, default="The correct response is:"
    )

    args = parser.parse_args()
    if "lean" in args.dataset:
        args.data_question_key = "nl_problem"
        args.data_answer_key = "nl_proof"
    else:
        args.data_question_key = "question"
        args.data_answer_key = "answer"

    print(args.model_type)
    assert len(args.model_path)

    if args.cot_trigger_no == 1:
        args.cot_trigger = "Let's think step by step."

    return args


def get_question_answer(args):
    allfilepath = args.data_path
    questions = []
    answers = []

    # Attempt to read the file as a regular JSON file
    for filepath in allfilepath.split(","):
        try:
            with open(filepath, "r") as file:
                data = json.load(file)
                # If the data is a list, assume it's an array of objects
                if isinstance(data, list):
                    for json_item in data:
                        answers.append(json_item)
                # If the data is a dict, assume it's a single object (or adjust logic as needed)
                elif isinstance(data, dict):
                    answers.append(json_item)

        except ValueError:
            # If it fails, assume the file is in JSON Lines format
            with open(filepath, "r") as file:
                for line in file:
                    json_item = json.loads(line)
                    answers.append(json_item)

    # questions  = [ PROMPT_DICT['lean4'].format(nl_statement= item['nl_problem'], nl_proof= item['nl_proof'] )  for item in answers]
    questions = [
        PROMPT_DICT["vallina"].format(
            question=item[args.data_question_key],
        )
        for item in answers
    ]

    # Sample one item from the questions list and print it
    sampled_question = random.choice(questions)
    print("Sampled Question:")
    print(sampled_question)

    return questions, answers


def generation(args):

    model = LLM(
        model=args.model_path,
        dtype="bfloat16",
        trust_remote_code=True,
        tensor_parallel_size=args.tensor_parallel,
        # pipeline_parallel_size=1,
        gpu_memory_utilization=0.95,
    )

    print(args.model_path)

    if "qianwen" in args.model_type:
        model.llm_engine.tokenizer.eos_token_id = 151645
        # model.llm_engine.tokenizer.pad_token_id = 151645
        model.llm_engine.tokenizer.pad_token_id = None
        # model.llm_engine.tokenizer.eos_token_id = None

    print("load data")

    questions, answers = get_question_answer(args)

    question_exist_list = []
    write_pattern = "w" if args.rewrite else "a+"
    if os.path.exists(args.output_dir) and not args.rewrite:
        # 如果文件存在,从文件中读取数据加载到response_list
        # Loop through each file that matches the pattern
        file_pattern = os.path.join(args.output_dir, "[0-9]*.json")
        for file_path in glob.glob(file_pattern):
            # Open and read the JSON file
            with open(file_path, "r") as fp:
                # Extract the 'question' field from each line and add it to the list
                for line in fp.readlines():
                    question_exist_list.append(json.loads(line)["question"])
    else:
        try:
            os.mkdir(args.output_dir)
        except:
            pass
    qa_pairs = [
        (questions[idx], answers[idx])
        for idx in range(len(questions))
        if questions[idx] not in question_exist_list
    ]
    cuda_pieces = np.array_split(
        range(len(qa_pairs)), args.cuda_num // args.tensor_parallel
    )
    print(f"fitered {len(questions) - len(qa_pairs)} already")

    with open(
        f"{args.output_dir}/{args.cuda_ind // args.tensor_parallel + args.cuda_start}.json",
        write_pattern,
        encoding="utf-8",
    ) as wf:
        start = cuda_pieces[args.cuda_start + args.cuda_ind // args.tensor_parallel][0]
        end = (
            cuda_pieces[args.cuda_start + args.cuda_ind // args.tensor_parallel][-1] + 1
        )
        subset_length = end - start
        total_batches = (
            subset_length + args.batch_size - 1
        ) // args.batch_size  # Calculate the total number of batches
        for batch in tqdm(
            batchify(qa_pairs[start:end], args.batch_size), total=total_batches
        ):
            questions, answers = zip(*batch)  # 解压问题和答案
            prompts = generate_prompts(questions, args)

            with torch.no_grad():
                output_all = []
                try:
                    for i in range(args.sample_num):
                        sample_list = []
                        sampling_params = SamplingParams(
                            temperature=args.temperature,
                            top_p=args.top_p,
                            max_tokens=args.init_max_new_tokens,
                        )
                        generations = model.generate(
                            prompts, sampling_params, use_tqdm=False
                        )
                        for generation_output in generations:
                            output = generation_output.outputs[0].text
                            sample_list.append(output)
                        output_all.append(sample_list)

                    output_all = list(map(list, zip(*output_all)))
                except Exception as e:
                    print(str(e))
                    exit
                dicts = []
                for question, answer, output, prompt in zip(
                    questions, answers, output_all, prompts
                ):
                    dicts.append(
                        {
                            "question": question,
                            "prompt": prompt,
                            "content": answer,
                            "total output": output,
                        }
                    )

                for dict in dicts:
                    wf.writelines(json.dumps(dict, ensure_ascii=False) + "\n")

                wf.flush()


def main(argv=None):
    args = parse_arguments()
    print("*****************************")
    print(args)
    print("*****************************")
    generation(args)


if __name__ == "__main__":
    main()