File size: 13,878 Bytes
6cf3348 3e37441 6cf3348 3e37441 6cf3348 3e37441 6cf3348 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import argparse
import random
import glob
import json
from collections import Counter
from vllm import LLM, SamplingParams
import torch
from tqdm import tqdm
import re
import sys
import os
import numpy as np
few_shot_string = """Question: Find the domain of the expression $\frac{\sqrt{x-2}}{\sqrt{5-x}}$.}
Let's think step by step. The expressions inside each square root must be non-negative. Therefore, $x-2 \ge 0$, so $x\ge2$, and $5 - x \ge 0$, so $x \le 5$. Also, the denominator cannot be equal to zero, so $5-x>0$, which gives $x<5$. Therefore, the domain of the expression is $[2,5)$. Final Answer: The answer is $[2,5)$. I hope it is correct.
Question: If $\det \mathbf{A} = 2$ and $\det \mathbf{B} = 12,$ then find $\det (\mathbf{A} \mathbf{B}).$
Let's think step by step. We have that $\det (\mathbf{A} \mathbf{B}) = (\det \mathbf{A})(\det \mathbf{B}) = (2)(12) = 24.$ Final Answer: The answer is $24$. I hope it is correct.
Question: Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how many times must Terrell lift them in order to lift the same total weight?
Let's think step by step. If Terrell lifts two 20-pound weights 12 times, he lifts a total of $2\cdot 12\cdot20=480$ pounds of weight. If he lifts two 15-pound weights instead for $n$ times, he will lift a total of $2\cdot15\cdot n=30n$ pounds of weight. Equating this to 480 pounds, we can solve for $n$:\begin{align*}
30n&=480\
\Rightarrow\qquad n&=480/30=16
\end{align*}
Final Answer: The answer is $16$. I hope it is correct.
Question: If the system of equations
\begin{align*}
6x-4y&=a,\
6y-9x &=b.
\end{align*}
has a solution $(x, y)$ where $x$ and $y$ are both nonzero, find $\frac{a}{b},$ assuming $b$ is nonzero.
Let's think step by step. If we multiply the first equation by $-\frac{3}{2}$, we obtain $$6y-9x=-\frac{3}{2}a.$$Since we also know that $6y-9x=b$, we have
$$-\frac{3}{2}a=b\Rightarrow\frac{a}{b}=-\frac{2}{3}.$$
Final Answer: The answer is $-\frac{2}{3}$. I hope it is correct.
"""
PROMPT_DICT = {
"lean4": (
"Statement and proof in natural language:\n\n"
"statement:\n{nl_statement}\n\n"
"proof:\n{nl_proof}\n\n"
"Translate the statement and proof in natural language to lean4:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
"old_prompt_bd": """Question: {question}
Let's think step by step.""",
"vallina": """{question}""",
}
def batchify(pairs, batch_size):
"""将列表分成指定大小的批次"""
for i in range(0, len(pairs), batch_size):
yield pairs[i : i + batch_size]
def generate_prompts(questions, args):
"""为每个问题生成提示"""
prompts = [generate_prompt_generation(args, question) for question in questions]
return prompts
def generate_prompt_generation(args, question):
if args.method == "zero_shot_cot":
content = question + " Let's think step by step."
elif args.method == "zero_shot":
content = question
else:
raise ValueError("we do not method for such model type yet")
if "generator" not in args.model_type:
MODEL_DICT = {
"llama": ("[INST] \n{content}\n [/INST]"),
"mistral": ("<s>[INST] {content} [/INST]"),
"chatglm": ("<|user|> \n{content}\n <|assistant|>"),
"qianwen": (
"<|im_start|>user\n{content}<|im_end|>\n<|im_start|>assistant\n"
),
"deepseek-math": ("User: {content}\n\nAssistant: "),
"internlm2-math": ("<|im_start|>system\n{content}<|im_end|>\n"),
"llemma": (
"### System Prompt\nYou are an intelligent mathematical assistant.\n\n### User Message\n{content}\n\n### Assistant"
),
}
if args.model_type in ["qianwen", "qianwen-13b", "qianwen-70b"]:
content = MODEL_DICT["qianwen"].format_map({"content": content})
elif args.model_type in ["chatglm", "deepseek-math-7b-base"]:
pass
elif args.model_type in ["llama2-7b-chat"]:
content = MODEL_DICT["llama"].format_map({"content": content})
elif args.model_type in ["mistral", "mixtral", "Mistral-7B-Instruct-v0.2"]:
content = MODEL_DICT["mistral"].format_map({"content": content})
elif args.model_type in ["internlm2-math-20b", "internlm2-math-7b"]:
content = MODEL_DICT["internlm2-math"].format_map({"content": content})
elif args.model_type in ["llemma_34b", "llemma_7b"]:
content = MODEL_DICT["llemma"].format_map({"content": content})
elif args.model_type in ["deepseek-math-7b-instruct"]:
content = MODEL_DICT["deepseek-math"].format_map({"content": content})
return content
def self_consistency(pairs):
val_counts = Counter(value for key, value in pairs)
most = val_counts.most_common(1)[0][0]
for key, value in pairs:
if value == most:
return key
def str2bool(s):
s = s.lower()
if s == "true":
return True
elif s == "false":
return False
else:
raise ValueError("invalid value: {}, must be true or false".format(s))
def parse_arguments():
parser = argparse.ArgumentParser(description="Zero-shot-CoT")
# parser.add_argument(
# "--dataset", type=str, default="plan",
# choices=["plan", 'tool_use_awareness', 'tool_selection', 'tool_selection_harder', 'tool_creation_awareness',
# 'tool_creation_awareness_harder', 'tool_creation',
# 'arguments_filling'], help="dataset used for experiment")
parser.add_argument(
"--cot_trigger_no",
type=int,
default=1,
help="A trigger sentence that elicits a model to execute chain of thought",
)
parser.add_argument("--dataset", type=str, default="")
parser.add_argument("--data_path", type=str, default="")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--eval_method", type=str, default="")
parser.add_argument("--model_path", type=str, default="")
parser.add_argument("--model_type", type=str, default="chatglm")
parser.add_argument("--output_dir", type=str, default="generation_test")
parser.add_argument("--lora_path", type=str, default="")
parser.add_argument("--method", type=str, default="few_shot_cot")
parser.add_argument("--data_question_key", type=str, default="question")
parser.add_argument("--data_answer_key", type=str, default="answer")
parser.add_argument("--sample_num", type=int, default=1)
parser.add_argument("--cuda_ind", type=int, default=0)
parser.add_argument("--tensor_parallel", type=int, default=1)
parser.add_argument("--cuda_start", type=int, default=0)
parser.add_argument("--cuda_num", type=int, default=8)
parser.add_argument("--load_in_8bit", type=str2bool, default=False)
parser.add_argument("--rewrite", type=str2bool, default=False)
parser.add_argument("--use_typewriter", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--top_p", type=float, default=1)
parser.add_argument("--iter_max_new_tokens", type=int, default=512)
parser.add_argument("--init_max_new_tokens", type=int, default=2048)
parser.add_argument("--min_new_tokens", type=int, default=1)
parser.add_argument(
"--correct_response_format", type=str, default="The correct response is:"
)
args = parser.parse_args()
if "lean" in args.dataset:
args.data_question_key = "nl_problem"
args.data_answer_key = "nl_proof"
else:
args.data_question_key = "question"
args.data_answer_key = "answer"
print(args.model_type)
assert len(args.model_path)
if args.cot_trigger_no == 1:
args.cot_trigger = "Let's think step by step."
return args
def get_question_answer(args):
allfilepath = args.data_path
questions = []
answers = []
# Attempt to read the file as a regular JSON file
for filepath in allfilepath.split(","):
try:
with open(filepath, "r") as file:
data = json.load(file)
# If the data is a list, assume it's an array of objects
if isinstance(data, list):
for json_item in data:
answers.append(json_item)
# If the data is a dict, assume it's a single object (or adjust logic as needed)
elif isinstance(data, dict):
answers.append(json_item)
except ValueError:
# If it fails, assume the file is in JSON Lines format
with open(filepath, "r") as file:
for line in file:
json_item = json.loads(line)
answers.append(json_item)
# questions = [ PROMPT_DICT['lean4'].format(nl_statement= item['nl_problem'], nl_proof= item['nl_proof'] ) for item in answers]
questions = [
PROMPT_DICT["vallina"].format(
question=item[args.data_question_key],
)
for item in answers
]
# Sample one item from the questions list and print it
sampled_question = random.choice(questions)
print("Sampled Question:")
print(sampled_question)
return questions, answers
def generation(args):
model = LLM(
model=args.model_path,
dtype="bfloat16",
trust_remote_code=True,
tensor_parallel_size=args.tensor_parallel,
# pipeline_parallel_size=1,
gpu_memory_utilization=0.95,
)
print(args.model_path)
if "qianwen" in args.model_type:
model.llm_engine.tokenizer.eos_token_id = 151645
# model.llm_engine.tokenizer.pad_token_id = 151645
model.llm_engine.tokenizer.pad_token_id = None
# model.llm_engine.tokenizer.eos_token_id = None
print("load data")
questions, answers = get_question_answer(args)
question_exist_list = []
write_pattern = "w" if args.rewrite else "a+"
if os.path.exists(args.output_dir) and not args.rewrite:
# 如果文件存在,从文件中读取数据加载到response_list
# Loop through each file that matches the pattern
file_pattern = os.path.join(args.output_dir, "[0-9]*.json")
for file_path in glob.glob(file_pattern):
# Open and read the JSON file
with open(file_path, "r") as fp:
# Extract the 'question' field from each line and add it to the list
for line in fp.readlines():
question_exist_list.append(json.loads(line)["question"])
else:
try:
os.mkdir(args.output_dir)
except:
pass
qa_pairs = [
(questions[idx], answers[idx])
for idx in range(len(questions))
if questions[idx] not in question_exist_list
]
cuda_pieces = np.array_split(
range(len(qa_pairs)), args.cuda_num // args.tensor_parallel
)
print(f"fitered {len(questions) - len(qa_pairs)} already")
with open(
f"{args.output_dir}/{args.cuda_ind // args.tensor_parallel + args.cuda_start}.json",
write_pattern,
encoding="utf-8",
) as wf:
start = cuda_pieces[args.cuda_start + args.cuda_ind // args.tensor_parallel][0]
end = (
cuda_pieces[args.cuda_start + args.cuda_ind // args.tensor_parallel][-1] + 1
)
subset_length = end - start
total_batches = (
subset_length + args.batch_size - 1
) // args.batch_size # Calculate the total number of batches
for batch in tqdm(
batchify(qa_pairs[start:end], args.batch_size), total=total_batches
):
questions, answers = zip(*batch) # 解压问题和答案
prompts = generate_prompts(questions, args)
with torch.no_grad():
output_all = []
try:
for i in range(args.sample_num):
sample_list = []
sampling_params = SamplingParams(
temperature=args.temperature,
top_p=args.top_p,
max_tokens=args.init_max_new_tokens,
)
generations = model.generate(
prompts, sampling_params, use_tqdm=False
)
for generation_output in generations:
output = generation_output.outputs[0].text
sample_list.append(output)
output_all.append(sample_list)
output_all = list(map(list, zip(*output_all)))
except Exception as e:
print(str(e))
exit
dicts = []
for question, answer, output, prompt in zip(
questions, answers, output_all, prompts
):
dicts.append(
{
"question": question,
"prompt": prompt,
"content": answer,
"total output": output,
}
)
for dict in dicts:
wf.writelines(json.dumps(dict, ensure_ascii=False) + "\n")
wf.flush()
def main(argv=None):
args = parse_arguments()
print("*****************************")
print(args)
print("*****************************")
generation(args)
if __name__ == "__main__":
main()
|