rootacess commited on
Commit
f0d0bc3
·
1 Parent(s): 4864b53

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1619.82 +/- 250.24
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e339c1b9fae98aa7c2d2f14a48235fd33859042bd757b1565bea0d75c69e53b0
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f647a9fed30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f647a9fedc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f647a9fee50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f647a9feee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f647a9fef70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f647aa03040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f647aa030d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f647aa03160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f647aa031f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f647aa03280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f647aa03310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f647aa033a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f647a9f8cc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674289134260344461,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGp+3b5BpPq9T8gZP9XzlT+ZjxM+bvuAvtaQ7b6L1qc8nX62PjiE3j6OOZW+D9nOPg2ZyztGM5m+f4YhPw5mmj3Rv2g/tZx1v/T1eL5So94+D51Dv2N1xj3QI/E9gZJ6v4O6ib9pPRs/l5HpPpM5ib/7qgC/wsZRvlb/GD+A8gK+1iX6vab94j7mws28mIc5vwnZIz9OoT69fB9Cv1YiEj+sFhy/qWa7PvBvFD/RZvy9cVGZP3CL6r2dUnc+NdifPoYSRL8S9Ug9sOhiPiZyk76Duom/aT0bP5eR6T5cym4/xoFCPl8gRj0qBBc/aEKAP5eDXL+I1F6/LZ/kvrFU/D1y1B8/Dq8cv6j7T76zRdC/eXZZv0707z7WBUA9o5QePyA8Zb4XNOI+XIsHPYiEWr9k5Su/S3A0v+fdsz7N9yVAz+ptP2wU07/ySgzAkzmJv4UgLb+XV/i+GuoLP9znTz9C57M+8xJNvV8liD77JwU7eAQmP6zSoTz7XS49B57ivPDsp7/IGCs+qNURPyKNsb6koiE9V2FivptwED9AmJ8/WHVAv3crDz+NEHC/UyIPP8/qbT9sFNO/l5HpPpM5ib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADVL562AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdPhmvQAAAACjGd2/AAAAAPaCA74AAAAAv93lPwAAAAAHg/y9AAAAADHn5T8AAAAAXtUpPAAAAADcr+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRmEtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFoACrsAAAAARED3vwAAAACPRQO+AAAAAPoa7T8AAAAAOxSsvAAAAADaxwBAAAAAAE6y1jwAAAAA+n7tvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPYsMzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB5mI49AAAAAKdIAMAAAAAAKeblPQAAAAA+4d0/AAAAAKNOwz0AAAAANIf9PwAAAAAL39w8AAAAAMy79r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtHYi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJTe0vQAAAADjUvC/AAAAANFcyr0AAAAAIov+PwAAAAAiccQ9AAAAAFBg4z8AAAAAWNIAPgAAAAA9Gf+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOzyvMbFS+MAWyUTegDjAF0lEdApsuG606YFHV9lChoBkdAlt54Dklu32gHTegDaAhHQKbPPWo3rD91fZQoaAZHQJMN6ol2NedoB03oA2gIR0Cm0sCzLOiWdX2UKGgGR0CRTZPO6d1/aAdN6ANoCEdAptP9fG+9J3V9lChoBkdAkheiKR+z+mgHTegDaAhHQKbXX6Rhc7h1fZQoaAZHQJPAVIZqEe1oB03oA2gIR0Cm2z1IRRMwdX2UKGgGR0CUuz6QNkOJaAdN6ANoCEdApt7Dk2gnMXV9lChoBkdAkqoxpL26CmgHTegDaAhHQKbgD/mT1TR1fZQoaAZHQJCCv8FY+0RoB03oA2gIR0Cm438pb2UTdX2UKGgGR0CTVfbYbsF/aAdN6ANoCEdApucpNKyv93V9lChoBkdAjrMtrKvFFWgHTegDaAhHQKbqsT238XN1fZQoaAZHQJMMitV7x/doB03oA2gIR0Cm7AESuhbodX2UKGgGR0CSGuQyyleoaAdN6ANoCEdApu99g+hXbXV9lChoBkdAc3jT0xubZ2gHTegDaAhHQKbzL0knkT91fZQoaAZHQI032BOHnEFoB03oA2gIR0Cm9rANPP9ldX2UKGgGR0CLhXspobn6aAdN6ANoCEdApvgGmHgxanV9lChoBkdAje9B7/n4f2gHTegDaAhHQKb7bJ17pmp1fZQoaAZHQIpjU61b7j1oB03oA2gIR0Cm/xqcVgx8dX2UKGgGR0CJrM0gKWszaAdN6ANoCEdApwKp+UhV2nV9lChoBkdAirrojfNzKmgHTegDaAhHQKcD8eOGTLZ1fZQoaAZHQJB/FZfUnXxoB03oA2gIR0CnB0PLPldUdX2UKGgGR0CMCM2KEWZaaAdN6ANoCEdApwrprFfiP3V9lChoBkdAkTS8jVx0dWgHTegDaAhHQKcOZG1hLGt1fZQoaAZHQJBnNgYxcmloB03oA2gIR0CnD6fTTfBOdX2UKGgGR0CPwfq4YrJ9aAdN6ANoCEdApxMVANXo1XV9lChoBkdAjMts4tHx0GgHTegDaAhHQKcW7rzGxUx1fZQoaAZHQI6GpEQXhwVoB03oA2gIR0CnGncW0qpcdX2UKGgGR0CJzvZbILgGaAdN6ANoCEdApxvPr8iwCHV9lChoBkdAjwiZO8Cgb2gHTegDaAhHQKcfV5iVjZt1fZQoaAZHQJQE3pSrHVBoB03oA2gIR0CnIwDaPCEYdX2UKGgGR0CG/iQNkOI7aAdN6ANoCEdApyaYIt16mnV9lChoBkdAlEt8r/bTMWgHTegDaAhHQKcn0UqQRwt1fZQoaAZHQJJvG56MR6FoB03oA2gIR0CnKzkB0ZFYdX2UKGgGR0CR5ac+7lJZaAdN6ANoCEdApy7+Xw9aEHV9lChoBkdAlIAOzUqhDmgHTegDaAhHQKcykZof0Vd1fZQoaAZHQIb8TcIqsltoB03oA2gIR0CnM9zNliBodX2UKGgGR0CSvebwz+FUaAdN6ANoCEdApzdOs1baAXV9lChoBkdAmbVfcN6PbWgHTegDaAhHQKc66lZX+2p1fZQoaAZHQJI/JQvYe1doB03oA2gIR0CnPn7iADq4dX2UKGgGR0CInjldTo+waAdN6ANoCEdApz/erp7kXHV9lChoBkdAhk3Gu9vjwWgHTegDaAhHQKdDUEZiuuB1fZQoaAZHQJDMy5rgwXZoB03oA2gIR0CnRxh9b5dodX2UKGgGR0CSIxKzRhMKaAdN6ANoCEdAp0qU8V58jXV9lChoBkdAkc+pimVJMGgHTegDaAhHQKdL4Chew9t1fZQoaAZHQI4m7lT3qRloB03oA2gIR0CnT1DcM3IddX2UKGgGR0CL9vrgOz6aaAdN6ANoCEdAp1MvUF0PpnV9lChoBkdAkKOVZcLSeGgHTegDaAhHQKdW03CsOoZ1fZQoaAZHQIqUgPmPo3doB03oA2gIR0CnWCywW3z+dX2UKGgGR0CVetizsyBTaAdN6ANoCEdAp1ua5qdpZnV9lChoBkdAgirf+85CGGgHTegDaAhHQKdfL6rvLHN1fZQoaAZHQJb+cMKCxu9oB03oA2gIR0CnYo+9alk6dX2UKGgGR0CTmcOCoS+QaAdN6ANoCEdAp2PUahpQDXV9lChoBkdAlVNkWl/H52gHTegDaAhHQKdnIv5gw491fZQoaAZHQJKFE+dK/VRoB03oA2gIR0Cnas/zBhx6dX2UKGgGR0CQ89Dlo11oaAdN6ANoCEdAp25SYoiLVHV9lChoBkdAjARnVXmvGWgHTegDaAhHQKdvlVVghKV1fZQoaAZHQJlU5Sn+AEtoB03oA2gIR0Cncu7TMJQddX2UKGgGR0CaLUm4iHIqaAdN6ANoCEdAp3Z2bExZdXV9lChoBkdAmnanFYMfBGgHTegDaAhHQKd59y1/lQx1fZQoaAZHQJcQ1dE9dNZoB03oA2gIR0CnezlqJuVHdX2UKGgGR0COvW4JeE7GaAdN6ANoCEdAp37ENayKN3V9lChoBkdAlMXFRtP56GgHTegDaAhHQKeCqjSofjl1fZQoaAZHQHkME47zTWpoB03oA2gIR0CnhkT+FUQ1dX2UKGgGR0CbbuQNCqp+aAdN6ANoCEdAp4eBVU+9rXV9lChoBkdAmjaLBKtga2gHTegDaAhHQKeK37YTTOR1fZQoaAZHQJl0DsiSq2loB03oA2gIR0CnjqRcu8K5dX2UKGgGR0CKbFTMJQchaAdN6ANoCEdAp5JOEqUeMnV9lChoBkdAmNtc0P6KtWgHTegDaAhHQKeTkFBY3eh1fZQoaAZHQJdzYqjJuEVoB03oA2gIR0CnlvsSbpeNdX2UKGgGR0CR4SpSJj2BaAdN6ANoCEdAp5qsL4N7SnV9lChoBkdAlpzuX/o7m2gHTegDaAhHQKeeD2MbWEt1fZQoaAZHQJPbKq6vq1RoB03oA2gIR0Cnn1aXSjQBdX2UKGgGR0CUjQ9tMwlCaAdN6ANoCEdAp6K61NQCS3V9lChoBkdAmkKsFUyYX2gHTegDaAhHQKemb9/BnBd1fZQoaAZHQJXfOJuVHFxoB03oA2gIR0CnqyQT/Q0GdX2UKGgGR0CTikzDXOGCaAdN6ANoCEdAp609Ew35vnV9lChoBkdAiuKoTGo73mgHTegDaAhHQKeyhJnxri51fZQoaAZHQJKuh0/4ZdhoB03oA2gIR0Cntjndfsu4dX2UKGgGR0CYVDPfbblBaAdN6ANoCEdAp7nHhjvuxHV9lChoBkdAmopYNutOmGgHTegDaAhHQKe7CLxZuAJ1fZQoaAZHQJr+ITN+so5oB03oA2gIR0CnvnDJU5uJdX2UKGgGR0CYl5uTA31jaAdN6ANoCEdAp8IXbEgnt3V9lChoBkdAmexjMmnfmGgHTegDaAhHQKfFkgFHJ911fZQoaAZHQJl1tp48loloB03oA2gIR0Cnxs2Cdz4ldX2UKGgGR0CUHskM1CPZaAdN6ANoCEdAp8pb6eoUBXV9lChoBkdAnCMmS2Yv4GgHTegDaAhHQKfOWZxaPjp1fZQoaAZHQJu6YX3xnWdoB03oA2gIR0Cn0dFZHNHIdX2UKGgGR0CWbGERaouPaAdN6ANoCEdAp9MifjCHh3V9lChoBkdAmJFkuHvc8GgHTegDaAhHQKfWdwvxpcp1fZQoaAZHQJf7o4dZJTVoB03oA2gIR0Cn2iZbQkX2dX2UKGgGR0CdFbsF+uvEaAdN6ANoCEdAp92F6Tnq3XV9lChoBkdAm/hbf51vEWgHTegDaAhHQKfe04cWCVd1fZQoaAZHQJlmUISlFc9oB03oA2gIR0Cn4jPkJa7mdX2UKGgGR0CfeipwCKaYaAdN6ANoCEdAp+XUX531SXV9lChoBkdAlV8Akona4GgHTegDaAhHQKfpYtJWeYl1fZQoaAZHQJpdJOFg2IhoB03oA2gIR0Cn6rPTw2ETdX2UKGgGR0CaCTC2c8T0aAdN6ANoCEdAp+4nNiYsunV9lChoBkdAm5VZw0fozWgHTegDaAhHQKfx3j8UEgZ1fZQoaAZHQJmG7UQTVUdoB03oA2gIR0Cn9XBc7hegdX2UKGgGR0CZQLxHoX9BaAdN6ANoCEdAp/a6IBRyfnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:748a8dd328e40c60692e4e2e6a21c505a26637e20b05c752e54ef6af5c91178c
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e91661559e422b29d007378e4027441bf8762a6fe0cb45518a752f4e78ff8f35
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f647a9fed30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f647a9fedc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f647a9fee50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f647a9feee0>", "_build": "<function ActorCriticPolicy._build at 0x7f647a9fef70>", "forward": "<function ActorCriticPolicy.forward at 0x7f647aa03040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f647aa030d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f647aa03160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f647aa031f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f647aa03280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f647aa03310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f647aa033a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f647a9f8cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674289134260344461, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGp+3b5BpPq9T8gZP9XzlT+ZjxM+bvuAvtaQ7b6L1qc8nX62PjiE3j6OOZW+D9nOPg2ZyztGM5m+f4YhPw5mmj3Rv2g/tZx1v/T1eL5So94+D51Dv2N1xj3QI/E9gZJ6v4O6ib9pPRs/l5HpPpM5ib/7qgC/wsZRvlb/GD+A8gK+1iX6vab94j7mws28mIc5vwnZIz9OoT69fB9Cv1YiEj+sFhy/qWa7PvBvFD/RZvy9cVGZP3CL6r2dUnc+NdifPoYSRL8S9Ug9sOhiPiZyk76Duom/aT0bP5eR6T5cym4/xoFCPl8gRj0qBBc/aEKAP5eDXL+I1F6/LZ/kvrFU/D1y1B8/Dq8cv6j7T76zRdC/eXZZv0707z7WBUA9o5QePyA8Zb4XNOI+XIsHPYiEWr9k5Su/S3A0v+fdsz7N9yVAz+ptP2wU07/ySgzAkzmJv4UgLb+XV/i+GuoLP9znTz9C57M+8xJNvV8liD77JwU7eAQmP6zSoTz7XS49B57ivPDsp7/IGCs+qNURPyKNsb6koiE9V2FivptwED9AmJ8/WHVAv3crDz+NEHC/UyIPP8/qbT9sFNO/l5HpPpM5ib+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADVL562AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdPhmvQAAAACjGd2/AAAAAPaCA74AAAAAv93lPwAAAAAHg/y9AAAAADHn5T8AAAAAXtUpPAAAAADcr+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRmEtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFoACrsAAAAARED3vwAAAACPRQO+AAAAAPoa7T8AAAAAOxSsvAAAAADaxwBAAAAAAE6y1jwAAAAA+n7tvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPYsMzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB5mI49AAAAAKdIAMAAAAAAKeblPQAAAAA+4d0/AAAAAKNOwz0AAAAANIf9PwAAAAAL39w8AAAAAMy79r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtHYi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJTe0vQAAAADjUvC/AAAAANFcyr0AAAAAIov+PwAAAAAiccQ9AAAAAFBg4z8AAAAAWNIAPgAAAAA9Gf+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOzyvMbFS+MAWyUTegDjAF0lEdApsuG606YFHV9lChoBkdAlt54Dklu32gHTegDaAhHQKbPPWo3rD91fZQoaAZHQJMN6ol2NedoB03oA2gIR0Cm0sCzLOiWdX2UKGgGR0CRTZPO6d1/aAdN6ANoCEdAptP9fG+9J3V9lChoBkdAkheiKR+z+mgHTegDaAhHQKbXX6Rhc7h1fZQoaAZHQJPAVIZqEe1oB03oA2gIR0Cm2z1IRRMwdX2UKGgGR0CUuz6QNkOJaAdN6ANoCEdApt7Dk2gnMXV9lChoBkdAkqoxpL26CmgHTegDaAhHQKbgD/mT1TR1fZQoaAZHQJCCv8FY+0RoB03oA2gIR0Cm438pb2UTdX2UKGgGR0CTVfbYbsF/aAdN6ANoCEdApucpNKyv93V9lChoBkdAjrMtrKvFFWgHTegDaAhHQKbqsT238XN1fZQoaAZHQJMMitV7x/doB03oA2gIR0Cm7AESuhbodX2UKGgGR0CSGuQyyleoaAdN6ANoCEdApu99g+hXbXV9lChoBkdAc3jT0xubZ2gHTegDaAhHQKbzL0knkT91fZQoaAZHQI032BOHnEFoB03oA2gIR0Cm9rANPP9ldX2UKGgGR0CLhXspobn6aAdN6ANoCEdApvgGmHgxanV9lChoBkdAje9B7/n4f2gHTegDaAhHQKb7bJ17pmp1fZQoaAZHQIpjU61b7j1oB03oA2gIR0Cm/xqcVgx8dX2UKGgGR0CJrM0gKWszaAdN6ANoCEdApwKp+UhV2nV9lChoBkdAirrojfNzKmgHTegDaAhHQKcD8eOGTLZ1fZQoaAZHQJB/FZfUnXxoB03oA2gIR0CnB0PLPldUdX2UKGgGR0CMCM2KEWZaaAdN6ANoCEdApwrprFfiP3V9lChoBkdAkTS8jVx0dWgHTegDaAhHQKcOZG1hLGt1fZQoaAZHQJBnNgYxcmloB03oA2gIR0CnD6fTTfBOdX2UKGgGR0CPwfq4YrJ9aAdN6ANoCEdApxMVANXo1XV9lChoBkdAjMts4tHx0GgHTegDaAhHQKcW7rzGxUx1fZQoaAZHQI6GpEQXhwVoB03oA2gIR0CnGncW0qpcdX2UKGgGR0CJzvZbILgGaAdN6ANoCEdApxvPr8iwCHV9lChoBkdAjwiZO8Cgb2gHTegDaAhHQKcfV5iVjZt1fZQoaAZHQJQE3pSrHVBoB03oA2gIR0CnIwDaPCEYdX2UKGgGR0CG/iQNkOI7aAdN6ANoCEdApyaYIt16mnV9lChoBkdAlEt8r/bTMWgHTegDaAhHQKcn0UqQRwt1fZQoaAZHQJJvG56MR6FoB03oA2gIR0CnKzkB0ZFYdX2UKGgGR0CR5ac+7lJZaAdN6ANoCEdApy7+Xw9aEHV9lChoBkdAlIAOzUqhDmgHTegDaAhHQKcykZof0Vd1fZQoaAZHQIb8TcIqsltoB03oA2gIR0CnM9zNliBodX2UKGgGR0CSvebwz+FUaAdN6ANoCEdApzdOs1baAXV9lChoBkdAmbVfcN6PbWgHTegDaAhHQKc66lZX+2p1fZQoaAZHQJI/JQvYe1doB03oA2gIR0CnPn7iADq4dX2UKGgGR0CInjldTo+waAdN6ANoCEdApz/erp7kXHV9lChoBkdAhk3Gu9vjwWgHTegDaAhHQKdDUEZiuuB1fZQoaAZHQJDMy5rgwXZoB03oA2gIR0CnRxh9b5dodX2UKGgGR0CSIxKzRhMKaAdN6ANoCEdAp0qU8V58jXV9lChoBkdAkc+pimVJMGgHTegDaAhHQKdL4Chew9t1fZQoaAZHQI4m7lT3qRloB03oA2gIR0CnT1DcM3IddX2UKGgGR0CL9vrgOz6aaAdN6ANoCEdAp1MvUF0PpnV9lChoBkdAkKOVZcLSeGgHTegDaAhHQKdW03CsOoZ1fZQoaAZHQIqUgPmPo3doB03oA2gIR0CnWCywW3z+dX2UKGgGR0CVetizsyBTaAdN6ANoCEdAp1ua5qdpZnV9lChoBkdAgirf+85CGGgHTegDaAhHQKdfL6rvLHN1fZQoaAZHQJb+cMKCxu9oB03oA2gIR0CnYo+9alk6dX2UKGgGR0CTmcOCoS+QaAdN6ANoCEdAp2PUahpQDXV9lChoBkdAlVNkWl/H52gHTegDaAhHQKdnIv5gw491fZQoaAZHQJKFE+dK/VRoB03oA2gIR0Cnas/zBhx6dX2UKGgGR0CQ89Dlo11oaAdN6ANoCEdAp25SYoiLVHV9lChoBkdAjARnVXmvGWgHTegDaAhHQKdvlVVghKV1fZQoaAZHQJlU5Sn+AEtoB03oA2gIR0Cncu7TMJQddX2UKGgGR0CaLUm4iHIqaAdN6ANoCEdAp3Z2bExZdXV9lChoBkdAmnanFYMfBGgHTegDaAhHQKd59y1/lQx1fZQoaAZHQJcQ1dE9dNZoB03oA2gIR0CnezlqJuVHdX2UKGgGR0COvW4JeE7GaAdN6ANoCEdAp37ENayKN3V9lChoBkdAlMXFRtP56GgHTegDaAhHQKeCqjSofjl1fZQoaAZHQHkME47zTWpoB03oA2gIR0CnhkT+FUQ1dX2UKGgGR0CbbuQNCqp+aAdN6ANoCEdAp4eBVU+9rXV9lChoBkdAmjaLBKtga2gHTegDaAhHQKeK37YTTOR1fZQoaAZHQJl0DsiSq2loB03oA2gIR0CnjqRcu8K5dX2UKGgGR0CKbFTMJQchaAdN6ANoCEdAp5JOEqUeMnV9lChoBkdAmNtc0P6KtWgHTegDaAhHQKeTkFBY3eh1fZQoaAZHQJdzYqjJuEVoB03oA2gIR0CnlvsSbpeNdX2UKGgGR0CR4SpSJj2BaAdN6ANoCEdAp5qsL4N7SnV9lChoBkdAlpzuX/o7m2gHTegDaAhHQKeeD2MbWEt1fZQoaAZHQJPbKq6vq1RoB03oA2gIR0Cnn1aXSjQBdX2UKGgGR0CUjQ9tMwlCaAdN6ANoCEdAp6K61NQCS3V9lChoBkdAmkKsFUyYX2gHTegDaAhHQKemb9/BnBd1fZQoaAZHQJXfOJuVHFxoB03oA2gIR0CnqyQT/Q0GdX2UKGgGR0CTikzDXOGCaAdN6ANoCEdAp609Ew35vnV9lChoBkdAiuKoTGo73mgHTegDaAhHQKeyhJnxri51fZQoaAZHQJKuh0/4ZdhoB03oA2gIR0Cntjndfsu4dX2UKGgGR0CYVDPfbblBaAdN6ANoCEdAp7nHhjvuxHV9lChoBkdAmopYNutOmGgHTegDaAhHQKe7CLxZuAJ1fZQoaAZHQJr+ITN+so5oB03oA2gIR0CnvnDJU5uJdX2UKGgGR0CYl5uTA31jaAdN6ANoCEdAp8IXbEgnt3V9lChoBkdAmexjMmnfmGgHTegDaAhHQKfFkgFHJ911fZQoaAZHQJl1tp48loloB03oA2gIR0Cnxs2Cdz4ldX2UKGgGR0CUHskM1CPZaAdN6ANoCEdAp8pb6eoUBXV9lChoBkdAnCMmS2Yv4GgHTegDaAhHQKfOWZxaPjp1fZQoaAZHQJu6YX3xnWdoB03oA2gIR0Cn0dFZHNHIdX2UKGgGR0CWbGERaouPaAdN6ANoCEdAp9MifjCHh3V9lChoBkdAmJFkuHvc8GgHTegDaAhHQKfWdwvxpcp1fZQoaAZHQJf7o4dZJTVoB03oA2gIR0Cn2iZbQkX2dX2UKGgGR0CdFbsF+uvEaAdN6ANoCEdAp92F6Tnq3XV9lChoBkdAm/hbf51vEWgHTegDaAhHQKfe04cWCVd1fZQoaAZHQJlmUISlFc9oB03oA2gIR0Cn4jPkJa7mdX2UKGgGR0CfeipwCKaYaAdN6ANoCEdAp+XUX531SXV9lChoBkdAlV8Akona4GgHTegDaAhHQKfpYtJWeYl1fZQoaAZHQJpdJOFg2IhoB03oA2gIR0Cn6rPTw2ETdX2UKGgGR0CaCTC2c8T0aAdN6ANoCEdAp+4nNiYsunV9lChoBkdAm5VZw0fozWgHTegDaAhHQKfx3j8UEgZ1fZQoaAZHQJmG7UQTVUdoB03oA2gIR0Cn9XBc7hegdX2UKGgGR0CZQLxHoX9BaAdN6ANoCEdAp/a6IBRyfnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (954 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1619.8222516287, "std_reward": 250.2414669912724, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T09:18:33.166978"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2645e74a77deee80388525818b274e65de4c393135e569c1b313f874f86e2d23
3
+ size 2136