File size: 3,029 Bytes
9f9483c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: mit
tags:
- finance
- trading
- lstm
- differential-privacy
- turkish-market
- bist
language:
- tr
- en
library_name: pytorch
pipeline_tag: tabular-classification
---
# BIST DP-LSTM Trading Model
Differentially Private LSTM ensemble for Turkish stock market (BIST) price prediction with sentiment analysis integration.
## Model Details
- **Developed by:** rsmctn
- **Model type:** PyTorch Differential Privacy LSTM Ensemble
- **Language:** Turkish, English
- **License:** MIT
- **Repository:** [BIST_AI001](https://github.com/RSMCTN/BIST_AI001)
## Model Architecture
This model combines multiple approaches:
1. **DP-LSTM Core**: Multi-task LSTM with differential privacy (Opacus)
2. **Temporal Fusion Transformer**: Advanced attention mechanisms for financial sequences
3. **Simple Financial Transformer**: Lightweight transformer for rapid inference
4. **Ensemble Weighting**: Dynamic model combination with confidence estimation
## Training Data
- **BIST Historical Data**: 2019-2024 (BIST 30 stocks)
- **Technical Indicators**: 131+ features across multiple timeframes (1m, 5m, 15m, 60m, 1d)
- **News Sentiment**: Turkish financial news corpus with VADER + FinBERT
- **Privacy Protection**: ε=1.0 differential privacy with adaptive noise calibration
## Performance Metrics
- **Direction Accuracy (MVP)**: ≥68%
- **Direction Accuracy (Production)**: ≥75%
- **Sharpe Ratio**: >2.0
- **Max Drawdown**: <15%
- **Signal Confidence**: 65-95% range
## Usage
```python
# This is a demo model - full implementation in production system
import torch
from transformers import AutoModel
# Load model (demo)
model = AutoModel.from_pretrained("rsmctn/bist-dp-lstm-trading-model")
# Production usage requires full system:
# https://github.com/RSMCTN/BIST_AI001
```
## Intended Use
**Primary Use Cases:**
- Turkish stock market research
- Algorithmic trading signal generation
- Financial sentiment analysis
- Academic research in privacy-preserving ML
**Limitations:**
- Demo version for research purposes
- Requires full system for production use
- Not financial advice
## Ethical Considerations
- **Privacy**: Differential privacy protects individual trader data
- **Bias Mitigation**: Diverse training across market conditions
- **Transparency**: Open-source implementation
- **Responsible AI**: Clear disclaimers about financial risks
## Citation
```bibtex
@misc{bist_dp_lstm_2024,
title={Differential Privacy LSTM for Turkish Stock Market Prediction},
author={rsmctn},
year={2024},
url={https://github.com/RSMCTN/BIST_AI001}
}
```
## Contact
- **GitHub**: [rsmctn](https://github.com/RSMCTN)
- **Repository**: [BIST_AI001](https://github.com/RSMCTN/BIST_AI001)
- **HF Spaces Demo**: [Trading Dashboard](https://huggingface.co/spaces/rsmctn/bist-dp-lstm-trading-dashboard)
---
⚠️ **Disclaimer**: This model is for research and educational purposes only. Past performance does not guarantee future results. Always consult financial advisors before making investment decisions. |