--- license: apache-2.0 tags: - ruslanmv - avatar-renderer-mcp - VideoGenie --- # Avatar‑Renderer Checkpoints This repository bundles all pretrained model checkpoints required by the [Avatar Renderer MCP](https://github.com/ruslanmv/avatar-renderer-mcp) pipeline. **VideoGenie Avatar Generator** is a single‑image → talking‑head engine that ships an MCP‑native stdio server (`render_avatar` tool) and a FastAPI REST façade in one CUDA container. Drop it into any GPU pool and your MCP Gateway auto‑discovers it on boot. This model‑hub repo allows you to fetch **all** necessary checkpoints from a **single source** via Git LFS or the Hugging Face Hub API. --- ## Directory structure ``` ├── diff2lip │ └── Diff2Lip.pth # Audio‑to‑lip Diffusion model ├── fomm │ └── vox-cpk.pth # First‑Order‑Motion vox‑cpk checkpoint ├── gfpgan │ └── GFPGANv1.3.pth # GFPGAN v1.3 face enhancement model ├── sadtalker │ ├── SadTalker_V0.0.2_256.safetensors # Safetensors release bundle │ ├── epoch_20.pth # Training checkpoint (epoch 20) │ └── sadtalker.pth # Legacy binary checkpoint └── wav2lip └── wav2lip_gan.pth # Wav2Lip GAN audio-to-lip model ``` Each subfolder contains one or more formats of the same model, ensuring compatibility with different inference pipelines. --- ## Usage ### 1. Clone via Git LFS ```bash # Ensure Git LFS is installed: # https://git-lfs.github.com/ git clone https://huggingface.co/ruslanmv/avatar-renderer cd avatar-renderer # You'll now have a `models/` tree matching the structure above. ``` ### 2. Download via Python (Hugging Face Hub API) ```python from huggingface_hub import snapshot_download # Download all files into ./models-cache models_dir = snapshot_download( repo_id="ruslanmv/avatar-renderer", cache_dir="./models-cache", ) print("Checkpoints downloaded to:", models_dir) ``` ### 3. Integrate with Avatar Renderer MCP In your **Avatar Renderer MCP** project, configure the checkpoint environment variables to point at the local `models` directory: ```bash export FOMM_CKPT_DIR=/path/to/avatar-renderer/fomm export DIFF2LIP_CKPT=/path/to/avatar-renderer/diff2lip/Diff2Lip.pth export SADTALKER_CKPT_DIR=/path/to/avatar-renderer/sadtalker export WAV2LIP_CKPT=/path/to/avatar-renderer/wav2lip/wav2lip_gan.pth export GFPGAN_CKPT=/path/to/avatar-renderer/gfpgan/GFPGANv1.3.pth ``` Alternatively, mount the entire repo into `/models` inside a Docker container: ```dockerfile FROM ruslanmv/avatar-renderer-mcp:latest COPY --from=ruslanmv/avatar-renderer /models /models CMD ["uvicorn", "app.api:app", "--host", "0.0.0.0", "--port", "8000"] ``` --- ## License This repository collects checkpoints that were released under their respective open licenses: * **FOMM**: [Apache‑2.0](https://github.com/AliaksandrSiarohin/first-order-model/blob/master/LICENSE) * **Diff2Lip**: [MIT](https://github.com/YuanGary/DiffusionLi/blob/main/LICENSE) * **SadTalker**: [Apache‑2.0](https://github.com/Winfredy/SadTalker/blob/main/LICENSE) * **Wav2Lip**: [MIT](https://github.com/Rudrabha/Wav2Lip/blob/master/LICENSE) * **GFPGAN**: [MIT](https://github.com/TencentARC/GFPGAN/blob/main/LICENSE) Please refer to each upstream project for full license details. --- > Maintained by [ruslanmv](https://github.com/ruslanmv). > Part of the [Avatar Renderer MCP](https://github.com/ruslanmv/avatar-renderer-mcp) ecosystem.