--- datasets: - abisee/cnn_dailymail language: - en base_model: - google-t5/t5-small pipeline_tag: summarization --- # AML Text Summarization T5 Model This is a text summarization model based on the T5-Small architecture, developed as part of the Advanced Machine Learning course at the University of Bremen. ## Model Description This model is fine-tuned on the CNN/Daily Mail dataset for abstractive text summarization. It uses the T5-Small (Text-To-Text Transfer Transformer) architecture. ## Usage ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("s0urin/aml-text-summarization-t5") model = AutoModelForSeq2SeqLM.from_pretrained("s0urin/aml-text-summarization-t5") text = "Your long text here..." inputs = tokenizer("summarize: " + text, return_tensors="pt", max_length=512, truncation=True) outputs = model.generate(inputs.input_ids, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) summary = tokenizer.decode(outputs, skip_special_tokens=True) print(summary) ``` ## Authors - Sourin Kumar Pal - Jassim Hameed Ayobkhan