sam2ai commited on
Commit
f2f0651
·
verified ·
1 Parent(s): 1c9c73d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. README.md +61 -0
  3. all_results.json +8 -0
  4. checkpoint-250/config.json +40 -0
  5. checkpoint-250/generation_config.json +12 -0
  6. checkpoint-250/global_step250/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  7. checkpoint-250/global_step250/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  8. checkpoint-250/global_step250/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  9. checkpoint-250/global_step250/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  10. checkpoint-250/global_step250/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  11. checkpoint-250/global_step250/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  12. checkpoint-250/global_step250/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-250/global_step250/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-250/latest +1 -0
  15. checkpoint-250/model.safetensors.index.json +298 -0
  16. checkpoint-250/rng_state_0.pth +3 -0
  17. checkpoint-250/rng_state_1.pth +3 -0
  18. checkpoint-250/rng_state_2.pth +3 -0
  19. checkpoint-250/rng_state_3.pth +3 -0
  20. checkpoint-250/rng_state_4.pth +3 -0
  21. checkpoint-250/rng_state_5.pth +3 -0
  22. checkpoint-250/rng_state_6.pth +3 -0
  23. checkpoint-250/rng_state_7.pth +3 -0
  24. checkpoint-250/scheduler.pt +3 -0
  25. checkpoint-250/special_tokens_map.json +26 -0
  26. checkpoint-250/tokenizer.json +3 -0
  27. checkpoint-250/tokenizer_config.json +2068 -0
  28. checkpoint-250/trainer_state.json +1783 -0
  29. checkpoint-250/training_args.bin +3 -0
  30. checkpoint-250/zero_to_fp32.py +674 -0
  31. checkpoint-500/generation_config.json +12 -0
  32. checkpoint-500/latest +1 -0
  33. checkpoint-500/model.safetensors.index.json +298 -0
  34. checkpoint-500/rng_state_1.pth +3 -0
  35. checkpoint-500/rng_state_2.pth +3 -0
  36. checkpoint-500/rng_state_6.pth +3 -0
  37. checkpoint-500/tokenizer.json +3 -0
  38. checkpoint-500/trainer_state.json +3533 -0
  39. checkpoint-500/zero_to_fp32.py +674 -0
  40. config.json +40 -0
  41. generation_config.json +12 -0
  42. model-00004-of-00004.safetensors +3 -0
  43. model.safetensors.index.json +298 -0
  44. special_tokens_map.json +26 -0
  45. tokenizer.json +3 -0
  46. tokenizer_config.json +2068 -0
  47. train_results.json +8 -0
  48. trainer_log.jsonl +0 -0
  49. trainer_state.json +0 -0
  50. training_args.bin +3 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: meta-llama/Llama-3.1-8B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: sft
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # sft
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the open_thoughts_indic dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 1
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - gradient_accumulation_steps: 2
45
+ - total_train_batch_size: 16
46
+ - total_eval_batch_size: 64
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 3.0
51
+
52
+ ### Training results
53
+
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.45.0
59
+ - Pytorch 2.6.0.dev20241113+rocm6.2
60
+ - Datasets 3.1.0
61
+ - Tokenizers 0.20.3
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.9938900203665986,
3
+ "total_flos": 48064094208000.0,
4
+ "train_loss": 0.08951896556025865,
5
+ "train_runtime": 6057.9419,
6
+ "train_samples_per_second": 1.945,
7
+ "train_steps_per_second": 0.121
8
+ }
checkpoint-250/config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-3.1-8B-Instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": [
10
+ 128001,
11
+ 128008,
12
+ 128009
13
+ ],
14
+ "head_dim": 128,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 131072,
20
+ "mlp_bias": false,
21
+ "model_type": "llama",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 8,
25
+ "pretraining_tp": 1,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": {
28
+ "factor": 8.0,
29
+ "high_freq_factor": 4.0,
30
+ "low_freq_factor": 1.0,
31
+ "original_max_position_embeddings": 8192,
32
+ "rope_type": "llama3"
33
+ },
34
+ "rope_theta": 500000.0,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.45.0",
38
+ "use_cache": false,
39
+ "vocab_size": 128256
40
+ }
checkpoint-250/generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.45.0"
12
+ }
checkpoint-250/global_step250/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:722629e05fdf0e6e316307f91bff9e9bf8ea02f9ec7e2100ad50dba4f69bf8d4
3
+ size 151013
checkpoint-250/global_step250/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4309d7320150779dbb433c3218be10e29ac613ce5a1b6ed3a478de7fb5e08994
3
+ size 151013
checkpoint-250/global_step250/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a1d08ec23174f78945635f23b5818fed32952ad1ce47020aae7fd068f2056f0
3
+ size 151013
checkpoint-250/global_step250/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c56ba0eba5b7d18a95937d9e51129968d07a335530af84dfb4e5c890dfc24668
3
+ size 151013
checkpoint-250/global_step250/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e0a6bc5a7b28409207fd4a17751905f6958207bce4dfe80ad218bf9b6b6e5d0
3
+ size 151013
checkpoint-250/global_step250/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b0104954ca3acd9f9194c7264621e2f2b4b0aa03224d8d02b02ffc7276b7f68
3
+ size 151013
checkpoint-250/global_step250/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbe22acbaeb233d7b6f1a8409fea6a67edc5f3f025172c03fcc67bd2d2241317
3
+ size 151013
checkpoint-250/global_step250/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c15330e78d00776aa90aa965d946af8632b25190965d1fa149eb1e0edf8d3d2
3
+ size 151013
checkpoint-250/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step250
checkpoint-250/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
checkpoint-250/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
3
+ size 15984
checkpoint-250/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
3
+ size 15984
checkpoint-250/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
3
+ size 15984
checkpoint-250/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
3
+ size 15984
checkpoint-250/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
3
+ size 15984
checkpoint-250/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
3
+ size 15984
checkpoint-250/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
3
+ size 15984
checkpoint-250/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
3
+ size 15984
checkpoint-250/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1021f1d7900b96b56ff8fcec8621728c5a9abde9f5bb3739261bb7beb6a5b1e6
3
+ size 1064
checkpoint-250/special_tokens_map.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|eom_id|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|begin_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<|eot_id|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": "<|eot_id|>"
26
+ }
checkpoint-250/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
checkpoint-250/tokenizer_config.json ADDED
@@ -0,0 +1,2068 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "additional_special_tokens": [
2053
+ "<|eom_id|>"
2054
+ ],
2055
+ "bos_token": "<|begin_of_text|>",
2056
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2057
+ "clean_up_tokenization_spaces": true,
2058
+ "eos_token": "<|eot_id|>",
2059
+ "model_input_names": [
2060
+ "input_ids",
2061
+ "attention_mask"
2062
+ ],
2063
+ "model_max_length": 131072,
2064
+ "pad_token": "<|eot_id|>",
2065
+ "padding_side": "right",
2066
+ "split_special_tokens": false,
2067
+ "tokenizer_class": "PreTrainedTokenizerFast"
2068
+ }
checkpoint-250/trainer_state.json ADDED
@@ -0,0 +1,1783 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0183299389002036,
5
+ "eval_steps": 500,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.004073319755600814,
13
+ "grad_norm": 14.739597738910254,
14
+ "learning_rate": 1.3513513513513515e-07,
15
+ "loss": 0.3301,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.008146639511201629,
20
+ "grad_norm": 12.452379475537562,
21
+ "learning_rate": 2.702702702702703e-07,
22
+ "loss": 0.3036,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.012219959266802444,
27
+ "grad_norm": 12.86836901323053,
28
+ "learning_rate": 4.0540540540540546e-07,
29
+ "loss": 0.3424,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.016293279022403257,
34
+ "grad_norm": 13.43090696417895,
35
+ "learning_rate": 5.405405405405406e-07,
36
+ "loss": 0.3184,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.020366598778004074,
41
+ "grad_norm": 14.809270827070751,
42
+ "learning_rate": 6.756756756756758e-07,
43
+ "loss": 0.3138,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.024439918533604887,
48
+ "grad_norm": 12.082295065079254,
49
+ "learning_rate": 8.108108108108109e-07,
50
+ "loss": 0.2982,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.028513238289205704,
55
+ "grad_norm": 8.711027825602685,
56
+ "learning_rate": 9.459459459459461e-07,
57
+ "loss": 0.3063,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.032586558044806514,
62
+ "grad_norm": 7.652261107879573,
63
+ "learning_rate": 1.0810810810810812e-06,
64
+ "loss": 0.2749,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.03665987780040733,
69
+ "grad_norm": 7.726905307446712,
70
+ "learning_rate": 1.2162162162162164e-06,
71
+ "loss": 0.2718,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.04073319755600815,
76
+ "grad_norm": 3.4676017287243446,
77
+ "learning_rate": 1.3513513513513515e-06,
78
+ "loss": 0.2238,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.04480651731160896,
83
+ "grad_norm": 4.29492237739491,
84
+ "learning_rate": 1.4864864864864868e-06,
85
+ "loss": 0.2513,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.048879837067209775,
90
+ "grad_norm": 3.5844077505877707,
91
+ "learning_rate": 1.6216216216216219e-06,
92
+ "loss": 0.2327,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.05295315682281059,
97
+ "grad_norm": 7.031113851112456,
98
+ "learning_rate": 1.756756756756757e-06,
99
+ "loss": 0.239,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.05702647657841141,
104
+ "grad_norm": 7.210450292846676,
105
+ "learning_rate": 1.8918918918918922e-06,
106
+ "loss": 0.277,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.06109979633401222,
111
+ "grad_norm": 6.526062178388152,
112
+ "learning_rate": 2.0270270270270273e-06,
113
+ "loss": 0.2495,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.06517311608961303,
118
+ "grad_norm": 5.157530413977274,
119
+ "learning_rate": 2.1621621621621623e-06,
120
+ "loss": 0.2425,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.06924643584521385,
125
+ "grad_norm": 3.242500698401516,
126
+ "learning_rate": 2.297297297297298e-06,
127
+ "loss": 0.1985,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.07331975560081466,
132
+ "grad_norm": 2.554097363562634,
133
+ "learning_rate": 2.432432432432433e-06,
134
+ "loss": 0.1822,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.07739307535641547,
139
+ "grad_norm": 2.6535341941648047,
140
+ "learning_rate": 2.5675675675675675e-06,
141
+ "loss": 0.2252,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.0814663951120163,
146
+ "grad_norm": 2.5516965886789076,
147
+ "learning_rate": 2.702702702702703e-06,
148
+ "loss": 0.1862,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0855397148676171,
153
+ "grad_norm": 2.6017363031504264,
154
+ "learning_rate": 2.837837837837838e-06,
155
+ "loss": 0.2098,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.08961303462321792,
160
+ "grad_norm": 2.0129035331912184,
161
+ "learning_rate": 2.9729729729729736e-06,
162
+ "loss": 0.1699,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.09368635437881874,
167
+ "grad_norm": 1.849938821231628,
168
+ "learning_rate": 3.1081081081081082e-06,
169
+ "loss": 0.1868,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.09775967413441955,
174
+ "grad_norm": 1.764863585345639,
175
+ "learning_rate": 3.2432432432432437e-06,
176
+ "loss": 0.1669,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.10183299389002037,
181
+ "grad_norm": 1.8494325730642949,
182
+ "learning_rate": 3.3783783783783788e-06,
183
+ "loss": 0.1507,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.10590631364562118,
188
+ "grad_norm": 1.6304914383856781,
189
+ "learning_rate": 3.513513513513514e-06,
190
+ "loss": 0.1534,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.109979633401222,
195
+ "grad_norm": 1.4579913516119778,
196
+ "learning_rate": 3.648648648648649e-06,
197
+ "loss": 0.1387,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.11405295315682282,
202
+ "grad_norm": 1.6082049119577289,
203
+ "learning_rate": 3.7837837837837844e-06,
204
+ "loss": 0.1406,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.11812627291242363,
209
+ "grad_norm": 1.4819461102449234,
210
+ "learning_rate": 3.918918918918919e-06,
211
+ "loss": 0.1323,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.12219959266802444,
216
+ "grad_norm": 1.7009165157092279,
217
+ "learning_rate": 4.0540540540540545e-06,
218
+ "loss": 0.1577,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.12627291242362526,
223
+ "grad_norm": 1.5721048343370418,
224
+ "learning_rate": 4.189189189189189e-06,
225
+ "loss": 0.1345,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.13034623217922606,
230
+ "grad_norm": 1.5868902144082508,
231
+ "learning_rate": 4.324324324324325e-06,
232
+ "loss": 0.1641,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.13441955193482688,
237
+ "grad_norm": 1.367409491711825,
238
+ "learning_rate": 4.45945945945946e-06,
239
+ "loss": 0.1568,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.1384928716904277,
244
+ "grad_norm": 1.2082341226617432,
245
+ "learning_rate": 4.594594594594596e-06,
246
+ "loss": 0.1158,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.1425661914460285,
251
+ "grad_norm": 1.2834846670425744,
252
+ "learning_rate": 4.72972972972973e-06,
253
+ "loss": 0.1553,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.14663951120162932,
258
+ "grad_norm": 1.4278045526468992,
259
+ "learning_rate": 4.864864864864866e-06,
260
+ "loss": 0.1472,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.15071283095723015,
265
+ "grad_norm": 1.1433863309324082,
266
+ "learning_rate": 5e-06,
267
+ "loss": 0.1216,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.15478615071283094,
272
+ "grad_norm": 1.2556861775151085,
273
+ "learning_rate": 5.135135135135135e-06,
274
+ "loss": 0.1383,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.15885947046843177,
279
+ "grad_norm": 1.1940515610624718,
280
+ "learning_rate": 5.2702702702702705e-06,
281
+ "loss": 0.1488,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.1629327902240326,
286
+ "grad_norm": 1.365361196469323,
287
+ "learning_rate": 5.405405405405406e-06,
288
+ "loss": 0.1658,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.1670061099796334,
293
+ "grad_norm": 1.6375597676471598,
294
+ "learning_rate": 5.540540540540541e-06,
295
+ "loss": 0.1244,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.1710794297352342,
300
+ "grad_norm": 1.058410205986207,
301
+ "learning_rate": 5.675675675675676e-06,
302
+ "loss": 0.1129,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.17515274949083504,
307
+ "grad_norm": 1.468616447672182,
308
+ "learning_rate": 5.810810810810811e-06,
309
+ "loss": 0.176,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.17922606924643583,
314
+ "grad_norm": 1.1292066998688302,
315
+ "learning_rate": 5.945945945945947e-06,
316
+ "loss": 0.1235,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.18329938900203666,
321
+ "grad_norm": 1.1790440780653373,
322
+ "learning_rate": 6.081081081081082e-06,
323
+ "loss": 0.1352,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.18737270875763748,
328
+ "grad_norm": 1.144770740193701,
329
+ "learning_rate": 6.2162162162162164e-06,
330
+ "loss": 0.1375,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.19144602851323828,
335
+ "grad_norm": 1.3169675540020822,
336
+ "learning_rate": 6.351351351351351e-06,
337
+ "loss": 0.1451,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.1955193482688391,
342
+ "grad_norm": 1.1364743430386761,
343
+ "learning_rate": 6.486486486486487e-06,
344
+ "loss": 0.1073,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.19959266802443992,
349
+ "grad_norm": 1.3532964160734307,
350
+ "learning_rate": 6.621621621621622e-06,
351
+ "loss": 0.1502,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.20366598778004075,
356
+ "grad_norm": 1.1049371458723167,
357
+ "learning_rate": 6.7567567567567575e-06,
358
+ "loss": 0.116,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.20773930753564154,
363
+ "grad_norm": 1.0634720045604809,
364
+ "learning_rate": 6.891891891891892e-06,
365
+ "loss": 0.1438,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.21181262729124237,
370
+ "grad_norm": 1.1677623232682453,
371
+ "learning_rate": 7.027027027027028e-06,
372
+ "loss": 0.1143,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.2158859470468432,
377
+ "grad_norm": 1.2552603959178812,
378
+ "learning_rate": 7.162162162162163e-06,
379
+ "loss": 0.1443,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.219959266802444,
384
+ "grad_norm": 1.1556616828254782,
385
+ "learning_rate": 7.297297297297298e-06,
386
+ "loss": 0.1341,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.2240325865580448,
391
+ "grad_norm": 1.1241236805182522,
392
+ "learning_rate": 7.4324324324324324e-06,
393
+ "loss": 0.1283,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.22810590631364563,
398
+ "grad_norm": 0.9867741809756463,
399
+ "learning_rate": 7.567567567567569e-06,
400
+ "loss": 0.1302,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.23217922606924643,
405
+ "grad_norm": 1.0672327000495885,
406
+ "learning_rate": 7.702702702702704e-06,
407
+ "loss": 0.113,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.23625254582484725,
412
+ "grad_norm": 1.0659735135074857,
413
+ "learning_rate": 7.837837837837838e-06,
414
+ "loss": 0.1293,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.24032586558044808,
419
+ "grad_norm": 1.2422197356017706,
420
+ "learning_rate": 7.972972972972974e-06,
421
+ "loss": 0.164,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.24439918533604887,
426
+ "grad_norm": 1.3538609671806645,
427
+ "learning_rate": 8.108108108108109e-06,
428
+ "loss": 0.1548,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.2484725050916497,
433
+ "grad_norm": 1.0759558101958346,
434
+ "learning_rate": 8.243243243243245e-06,
435
+ "loss": 0.1225,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.2525458248472505,
440
+ "grad_norm": 1.1244956381449198,
441
+ "learning_rate": 8.378378378378378e-06,
442
+ "loss": 0.1175,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.25661914460285135,
447
+ "grad_norm": 1.171629685706723,
448
+ "learning_rate": 8.513513513513514e-06,
449
+ "loss": 0.1204,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.2606924643584521,
454
+ "grad_norm": 1.2905585681894916,
455
+ "learning_rate": 8.64864864864865e-06,
456
+ "loss": 0.1253,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.26476578411405294,
461
+ "grad_norm": 1.3979008428570314,
462
+ "learning_rate": 8.783783783783785e-06,
463
+ "loss": 0.191,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.26883910386965376,
468
+ "grad_norm": 1.226756333773235,
469
+ "learning_rate": 8.91891891891892e-06,
470
+ "loss": 0.1287,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.2729124236252546,
475
+ "grad_norm": 1.2835470528218054,
476
+ "learning_rate": 9.054054054054054e-06,
477
+ "loss": 0.138,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.2769857433808554,
482
+ "grad_norm": 1.1622195270679896,
483
+ "learning_rate": 9.189189189189191e-06,
484
+ "loss": 0.1259,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.28105906313645623,
489
+ "grad_norm": 1.1512666578576678,
490
+ "learning_rate": 9.324324324324325e-06,
491
+ "loss": 0.1292,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.285132382892057,
496
+ "grad_norm": 0.9695391815507838,
497
+ "learning_rate": 9.45945945945946e-06,
498
+ "loss": 0.1142,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2892057026476578,
503
+ "grad_norm": 1.1262409828408337,
504
+ "learning_rate": 9.594594594594594e-06,
505
+ "loss": 0.1188,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.29327902240325865,
510
+ "grad_norm": 0.9820966211674147,
511
+ "learning_rate": 9.729729729729732e-06,
512
+ "loss": 0.1052,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.2973523421588595,
517
+ "grad_norm": 1.1058230077470572,
518
+ "learning_rate": 9.864864864864865e-06,
519
+ "loss": 0.1246,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.3014256619144603,
524
+ "grad_norm": 1.3891942844370528,
525
+ "learning_rate": 1e-05,
526
+ "loss": 0.1651,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.3054989816700611,
531
+ "grad_norm": 1.1373599847305171,
532
+ "learning_rate": 9.99994352762958e-06,
533
+ "loss": 0.1259,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.3095723014256619,
538
+ "grad_norm": 1.0803757941511039,
539
+ "learning_rate": 9.999774111793974e-06,
540
+ "loss": 0.1485,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.3136456211812627,
545
+ "grad_norm": 1.509987566205336,
546
+ "learning_rate": 9.999491756320105e-06,
547
+ "loss": 0.1708,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.31771894093686354,
552
+ "grad_norm": 1.3769318827034491,
553
+ "learning_rate": 9.99909646758609e-06,
554
+ "loss": 0.1483,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.32179226069246436,
559
+ "grad_norm": 0.9995516357476201,
560
+ "learning_rate": 9.99858825452108e-06,
561
+ "loss": 0.1124,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.3258655804480652,
566
+ "grad_norm": 1.4328593788226842,
567
+ "learning_rate": 9.997967128605078e-06,
568
+ "loss": 0.1849,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.329938900203666,
573
+ "grad_norm": 1.0397129864144867,
574
+ "learning_rate": 9.997233103868664e-06,
575
+ "loss": 0.1199,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.3340122199592668,
580
+ "grad_norm": 1.3312975796955133,
581
+ "learning_rate": 9.996386196892683e-06,
582
+ "loss": 0.1748,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.3380855397148676,
587
+ "grad_norm": 1.2070448028045222,
588
+ "learning_rate": 9.995426426807875e-06,
589
+ "loss": 0.1449,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.3421588594704684,
594
+ "grad_norm": 0.9786604342473315,
595
+ "learning_rate": 9.994353815294438e-06,
596
+ "loss": 0.1349,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.34623217922606925,
601
+ "grad_norm": 1.16279378070579,
602
+ "learning_rate": 9.993168386581533e-06,
603
+ "loss": 0.1111,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.35030549898167007,
608
+ "grad_norm": 1.0832386326974766,
609
+ "learning_rate": 9.991870167446751e-06,
610
+ "loss": 0.1271,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.3543788187372709,
615
+ "grad_norm": 1.076044536856832,
616
+ "learning_rate": 9.990459187215498e-06,
617
+ "loss": 0.122,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.35845213849287166,
622
+ "grad_norm": 1.1390626595350608,
623
+ "learning_rate": 9.98893547776033e-06,
624
+ "loss": 0.1429,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.3625254582484725,
629
+ "grad_norm": 1.2799324833393828,
630
+ "learning_rate": 9.987299073500245e-06,
631
+ "loss": 0.1789,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.3665987780040733,
636
+ "grad_norm": 1.0088789278468007,
637
+ "learning_rate": 9.985550011399889e-06,
638
+ "loss": 0.1217,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.37067209775967414,
643
+ "grad_norm": 1.0635380396962304,
644
+ "learning_rate": 9.98368833096874e-06,
645
+ "loss": 0.1517,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.37474541751527496,
650
+ "grad_norm": 1.1149195586496816,
651
+ "learning_rate": 9.981714074260196e-06,
652
+ "loss": 0.1648,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.3788187372708758,
657
+ "grad_norm": 0.9770064004740078,
658
+ "learning_rate": 9.979627285870644e-06,
659
+ "loss": 0.1173,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.38289205702647655,
664
+ "grad_norm": 1.5786545324573935,
665
+ "learning_rate": 9.977428012938437e-06,
666
+ "loss": 0.2148,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.3869653767820774,
671
+ "grad_norm": 0.9445672697637628,
672
+ "learning_rate": 9.975116305142836e-06,
673
+ "loss": 0.1272,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.3910386965376782,
678
+ "grad_norm": 0.832092882135511,
679
+ "learning_rate": 9.97269221470289e-06,
680
+ "loss": 0.1149,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.395112016293279,
685
+ "grad_norm": 0.8009975217381654,
686
+ "learning_rate": 9.97015579637625e-06,
687
+ "loss": 0.1081,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.39918533604887985,
692
+ "grad_norm": 0.909000272396086,
693
+ "learning_rate": 9.967507107457942e-06,
694
+ "loss": 0.1249,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.40325865580448067,
699
+ "grad_norm": 0.9894702747295367,
700
+ "learning_rate": 9.96474620777906e-06,
701
+ "loss": 0.1404,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.4073319755600815,
706
+ "grad_norm": 1.1517905886733883,
707
+ "learning_rate": 9.961873159705426e-06,
708
+ "loss": 0.1433,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.41140529531568226,
713
+ "grad_norm": 1.2806427058824508,
714
+ "learning_rate": 9.95888802813617e-06,
715
+ "loss": 0.1723,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.4154786150712831,
720
+ "grad_norm": 0.919332585767889,
721
+ "learning_rate": 9.955790880502278e-06,
722
+ "loss": 0.1219,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.4195519348268839,
727
+ "grad_norm": 0.8901964293186232,
728
+ "learning_rate": 9.952581786765057e-06,
729
+ "loss": 0.1157,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.42362525458248473,
734
+ "grad_norm": 1.3877972822654616,
735
+ "learning_rate": 9.949260819414557e-06,
736
+ "loss": 0.1642,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.42769857433808556,
741
+ "grad_norm": 0.9602184939318458,
742
+ "learning_rate": 9.945828053467939e-06,
743
+ "loss": 0.1224,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.4317718940936864,
748
+ "grad_norm": 1.230791876608231,
749
+ "learning_rate": 9.942283566467773e-06,
750
+ "loss": 0.1596,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.43584521384928715,
755
+ "grad_norm": 1.1454248942159495,
756
+ "learning_rate": 9.938627438480295e-06,
757
+ "loss": 0.1541,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.439918533604888,
762
+ "grad_norm": 1.0873300186194603,
763
+ "learning_rate": 9.93485975209359e-06,
764
+ "loss": 0.1533,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.4439918533604888,
769
+ "grad_norm": 0.9668569607934798,
770
+ "learning_rate": 9.930980592415728e-06,
771
+ "loss": 0.1539,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.4480651731160896,
776
+ "grad_norm": 1.487429443095859,
777
+ "learning_rate": 9.926990047072849e-06,
778
+ "loss": 0.2379,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.45213849287169044,
783
+ "grad_norm": 1.036501582869458,
784
+ "learning_rate": 9.922888206207174e-06,
785
+ "loss": 0.1181,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.45621181262729127,
790
+ "grad_norm": 0.9427386345315173,
791
+ "learning_rate": 9.918675162474974e-06,
792
+ "loss": 0.1157,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.46028513238289204,
797
+ "grad_norm": 1.1671785006625848,
798
+ "learning_rate": 9.914351011044472e-06,
799
+ "loss": 0.1671,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.46435845213849286,
804
+ "grad_norm": 0.8485104800209154,
805
+ "learning_rate": 9.909915849593705e-06,
806
+ "loss": 0.1094,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.4684317718940937,
811
+ "grad_norm": 0.895507646361391,
812
+ "learning_rate": 9.905369778308304e-06,
813
+ "loss": 0.1205,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.4725050916496945,
818
+ "grad_norm": 1.1024237478073182,
819
+ "learning_rate": 9.900712899879237e-06,
820
+ "loss": 0.1551,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.47657841140529533,
825
+ "grad_norm": 1.0811464118865846,
826
+ "learning_rate": 9.895945319500488e-06,
827
+ "loss": 0.1402,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.48065173116089616,
832
+ "grad_norm": 0.9829410685047446,
833
+ "learning_rate": 9.891067144866687e-06,
834
+ "loss": 0.1381,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.4847250509164969,
839
+ "grad_norm": 0.8855824729064482,
840
+ "learning_rate": 9.886078486170665e-06,
841
+ "loss": 0.1038,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.48879837067209775,
846
+ "grad_norm": 1.1091690462920576,
847
+ "learning_rate": 9.880979456100974e-06,
848
+ "loss": 0.1372,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.49287169042769857,
853
+ "grad_norm": 0.907049897730717,
854
+ "learning_rate": 9.875770169839343e-06,
855
+ "loss": 0.1322,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.4969450101832994,
860
+ "grad_norm": 1.0224824312976686,
861
+ "learning_rate": 9.870450745058066e-06,
862
+ "loss": 0.1257,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.5010183299389002,
867
+ "grad_norm": 1.0439109698157967,
868
+ "learning_rate": 9.865021301917358e-06,
869
+ "loss": 0.1317,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.505091649694501,
874
+ "grad_norm": 0.8972366065592501,
875
+ "learning_rate": 9.859481963062623e-06,
876
+ "loss": 0.1104,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.5091649694501018,
881
+ "grad_norm": 0.916952485621608,
882
+ "learning_rate": 9.853832853621703e-06,
883
+ "loss": 0.124,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.5132382892057027,
888
+ "grad_norm": 0.7586835858660547,
889
+ "learning_rate": 9.848074101202037e-06,
890
+ "loss": 0.1191,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.5173116089613035,
895
+ "grad_norm": 0.9149593226270635,
896
+ "learning_rate": 9.842205835887785e-06,
897
+ "loss": 0.1188,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.5213849287169042,
902
+ "grad_norm": 0.9483144871900878,
903
+ "learning_rate": 9.836228190236892e-06,
904
+ "loss": 0.1392,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.5254582484725051,
909
+ "grad_norm": 1.1137009286811568,
910
+ "learning_rate": 9.83014129927808e-06,
911
+ "loss": 0.1331,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.5295315682281059,
916
+ "grad_norm": 1.0049886812823983,
917
+ "learning_rate": 9.823945300507815e-06,
918
+ "loss": 0.1393,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.5336048879837068,
923
+ "grad_norm": 1.0017821694016227,
924
+ "learning_rate": 9.817640333887194e-06,
925
+ "loss": 0.1376,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.5376782077393075,
930
+ "grad_norm": 0.8770993451067021,
931
+ "learning_rate": 9.81122654183878e-06,
932
+ "loss": 0.1075,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.5417515274949084,
937
+ "grad_norm": 0.8112662923925413,
938
+ "learning_rate": 9.804704069243389e-06,
939
+ "loss": 0.1149,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.5458248472505092,
944
+ "grad_norm": 0.7783508225595258,
945
+ "learning_rate": 9.798073063436815e-06,
946
+ "loss": 0.1077,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.5498981670061099,
951
+ "grad_norm": 1.6671316247114485,
952
+ "learning_rate": 9.791333674206507e-06,
953
+ "loss": 0.1892,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.5539714867617108,
958
+ "grad_norm": 0.8856245620297392,
959
+ "learning_rate": 9.784486053788179e-06,
960
+ "loss": 0.1075,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.5580448065173116,
965
+ "grad_norm": 2.0578900491298824,
966
+ "learning_rate": 9.77753035686237e-06,
967
+ "loss": 0.1472,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.5621181262729125,
972
+ "grad_norm": 1.148525636808097,
973
+ "learning_rate": 9.770466740550963e-06,
974
+ "loss": 0.1598,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.5661914460285132,
979
+ "grad_norm": 0.8665254831769179,
980
+ "learning_rate": 9.763295364413616e-06,
981
+ "loss": 0.1186,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.570264765784114,
986
+ "grad_norm": 1.0970826186220186,
987
+ "learning_rate": 9.756016390444174e-06,
988
+ "loss": 0.1386,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.5743380855397149,
993
+ "grad_norm": 0.9530034310899396,
994
+ "learning_rate": 9.748629983067004e-06,
995
+ "loss": 0.1282,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.5784114052953157,
1000
+ "grad_norm": 1.2706893271757027,
1001
+ "learning_rate": 9.741136309133279e-06,
1002
+ "loss": 0.1754,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.5824847250509165,
1007
+ "grad_norm": 0.9703463762849697,
1008
+ "learning_rate": 9.733535537917211e-06,
1009
+ "loss": 0.1194,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.5865580448065173,
1014
+ "grad_norm": 0.8038414888371753,
1015
+ "learning_rate": 9.725827841112226e-06,
1016
+ "loss": 0.1162,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.5906313645621182,
1021
+ "grad_norm": 0.9411283645508486,
1022
+ "learning_rate": 9.718013392827087e-06,
1023
+ "loss": 0.1121,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.594704684317719,
1028
+ "grad_norm": 1.501666156048829,
1029
+ "learning_rate": 9.710092369581966e-06,
1030
+ "loss": 0.16,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.5987780040733197,
1035
+ "grad_norm": 0.9141719119872903,
1036
+ "learning_rate": 9.702064950304442e-06,
1037
+ "loss": 0.1211,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.6028513238289206,
1042
+ "grad_norm": 0.8652675727574004,
1043
+ "learning_rate": 9.693931316325473e-06,
1044
+ "loss": 0.0946,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.6069246435845214,
1049
+ "grad_norm": 0.7377787499846402,
1050
+ "learning_rate": 9.685691651375297e-06,
1051
+ "loss": 0.1016,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.6109979633401222,
1056
+ "grad_norm": 0.7630312206018969,
1057
+ "learning_rate": 9.677346141579277e-06,
1058
+ "loss": 0.1014,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.615071283095723,
1063
+ "grad_norm": 0.9718289359974593,
1064
+ "learning_rate": 9.668894975453705e-06,
1065
+ "loss": 0.1562,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.6191446028513238,
1070
+ "grad_norm": 1.004301729468449,
1071
+ "learning_rate": 9.66033834390153e-06,
1072
+ "loss": 0.1372,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.6232179226069247,
1077
+ "grad_norm": 0.9350824611493259,
1078
+ "learning_rate": 9.65167644020806e-06,
1079
+ "loss": 0.1254,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.6272912423625254,
1084
+ "grad_norm": 0.7612329276402703,
1085
+ "learning_rate": 9.64290946003659e-06,
1086
+ "loss": 0.0989,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.6313645621181263,
1091
+ "grad_norm": 0.7706614538086551,
1092
+ "learning_rate": 9.63403760142398e-06,
1093
+ "loss": 0.1013,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.6354378818737271,
1098
+ "grad_norm": 1.0210499034582712,
1099
+ "learning_rate": 9.625061064776183e-06,
1100
+ "loss": 0.1134,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.639511201629328,
1105
+ "grad_norm": 0.7560805642981956,
1106
+ "learning_rate": 9.61598005286372e-06,
1107
+ "loss": 0.0939,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.6435845213849287,
1112
+ "grad_norm": 1.0834289937869723,
1113
+ "learning_rate": 9.606794770817102e-06,
1114
+ "loss": 0.1785,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.6476578411405295,
1119
+ "grad_norm": 1.0611196002268826,
1120
+ "learning_rate": 9.597505426122184e-06,
1121
+ "loss": 0.1571,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.6517311608961304,
1126
+ "grad_norm": 1.0914261737532949,
1127
+ "learning_rate": 9.588112228615495e-06,
1128
+ "loss": 0.1745,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.6558044806517311,
1133
+ "grad_norm": 0.953948451978483,
1134
+ "learning_rate": 9.57861539047949e-06,
1135
+ "loss": 0.1353,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.659877800407332,
1140
+ "grad_norm": 1.2562247665468482,
1141
+ "learning_rate": 9.569015126237744e-06,
1142
+ "loss": 0.1521,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.6639511201629328,
1147
+ "grad_norm": 0.8283783602425362,
1148
+ "learning_rate": 9.559311652750135e-06,
1149
+ "loss": 0.1161,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.6680244399185336,
1154
+ "grad_norm": 0.7823509791751794,
1155
+ "learning_rate": 9.549505189207924e-06,
1156
+ "loss": 0.0976,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.6720977596741344,
1161
+ "grad_norm": 1.118258806444578,
1162
+ "learning_rate": 9.539595957128803e-06,
1163
+ "loss": 0.171,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.6761710794297352,
1168
+ "grad_norm": 0.7563799438807557,
1169
+ "learning_rate": 9.529584180351902e-06,
1170
+ "loss": 0.1159,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.6802443991853361,
1175
+ "grad_norm": 1.0059732424782886,
1176
+ "learning_rate": 9.519470085032733e-06,
1177
+ "loss": 0.1278,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.6843177189409368,
1182
+ "grad_norm": 0.8261325503708756,
1183
+ "learning_rate": 9.509253899638066e-06,
1184
+ "loss": 0.104,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.6883910386965377,
1189
+ "grad_norm": 1.1918252125330613,
1190
+ "learning_rate": 9.498935854940785e-06,
1191
+ "loss": 0.1682,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.6924643584521385,
1196
+ "grad_norm": 0.7216709177105455,
1197
+ "learning_rate": 9.488516184014667e-06,
1198
+ "loss": 0.1089,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.6965376782077393,
1203
+ "grad_norm": 0.8952054280934858,
1204
+ "learning_rate": 9.477995122229117e-06,
1205
+ "loss": 0.1521,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.7006109979633401,
1210
+ "grad_norm": 0.6538828419017942,
1211
+ "learning_rate": 9.467372907243858e-06,
1212
+ "loss": 0.1012,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.7046843177189409,
1217
+ "grad_norm": 0.840723056036209,
1218
+ "learning_rate": 9.456649779003548e-06,
1219
+ "loss": 0.117,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.7087576374745418,
1224
+ "grad_norm": 0.7652580794490056,
1225
+ "learning_rate": 9.44582597973238e-06,
1226
+ "loss": 0.1284,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.7128309572301426,
1231
+ "grad_norm": 0.9696904154678632,
1232
+ "learning_rate": 9.434901753928593e-06,
1233
+ "loss": 0.1429,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.7169042769857433,
1238
+ "grad_norm": 0.7509027450046076,
1239
+ "learning_rate": 9.423877348358956e-06,
1240
+ "loss": 0.1006,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.7209775967413442,
1245
+ "grad_norm": 0.6942112976471692,
1246
+ "learning_rate": 9.4127530120532e-06,
1247
+ "loss": 0.1042,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.725050916496945,
1252
+ "grad_norm": 1.4641902043350905,
1253
+ "learning_rate": 9.401528996298375e-06,
1254
+ "loss": 0.1676,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.7291242362525459,
1259
+ "grad_norm": 0.7418396518869238,
1260
+ "learning_rate": 9.390205554633193e-06,
1261
+ "loss": 0.1082,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.7331975560081466,
1266
+ "grad_norm": 1.2074617530849705,
1267
+ "learning_rate": 9.378782942842292e-06,
1268
+ "loss": 0.1401,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.7372708757637475,
1273
+ "grad_norm": 1.2938802390610347,
1274
+ "learning_rate": 9.367261418950459e-06,
1275
+ "loss": 0.1855,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.7413441955193483,
1280
+ "grad_norm": 1.225757248706894,
1281
+ "learning_rate": 9.355641243216798e-06,
1282
+ "loss": 0.1729,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.745417515274949,
1287
+ "grad_norm": 1.1483380054973364,
1288
+ "learning_rate": 9.343922678128854e-06,
1289
+ "loss": 0.1078,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.7494908350305499,
1294
+ "grad_norm": 0.8222440765781929,
1295
+ "learning_rate": 9.332105988396692e-06,
1296
+ "loss": 0.1239,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.7535641547861507,
1301
+ "grad_norm": 0.9655962832595171,
1302
+ "learning_rate": 9.3201914409469e-06,
1303
+ "loss": 0.1309,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.7576374745417516,
1308
+ "grad_norm": 0.8060791719318856,
1309
+ "learning_rate": 9.308179304916573e-06,
1310
+ "loss": 0.1159,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.7617107942973523,
1315
+ "grad_norm": 0.7357782726661909,
1316
+ "learning_rate": 9.29606985164723e-06,
1317
+ "loss": 0.1052,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.7657841140529531,
1322
+ "grad_norm": 0.9536045205176826,
1323
+ "learning_rate": 9.283863354678683e-06,
1324
+ "loss": 0.1351,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.769857433808554,
1329
+ "grad_norm": 0.8771938059672718,
1330
+ "learning_rate": 9.27156008974286e-06,
1331
+ "loss": 0.1304,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.7739307535641547,
1336
+ "grad_norm": 0.7232888469506753,
1337
+ "learning_rate": 9.259160334757575e-06,
1338
+ "loss": 0.1054,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.7780040733197556,
1343
+ "grad_norm": 0.8295211262810136,
1344
+ "learning_rate": 9.246664369820249e-06,
1345
+ "loss": 0.1323,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.7820773930753564,
1350
+ "grad_norm": 1.546126242212441,
1351
+ "learning_rate": 9.234072477201588e-06,
1352
+ "loss": 0.2385,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.7861507128309573,
1357
+ "grad_norm": 1.3189210288828541,
1358
+ "learning_rate": 9.2213849413392e-06,
1359
+ "loss": 0.1312,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.790224032586558,
1364
+ "grad_norm": 0.6640416710388396,
1365
+ "learning_rate": 9.208602048831176e-06,
1366
+ "loss": 0.1032,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.7942973523421588,
1371
+ "grad_norm": 0.7975892776697048,
1372
+ "learning_rate": 9.195724088429611e-06,
1373
+ "loss": 0.1089,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.7983706720977597,
1378
+ "grad_norm": 0.706905690575772,
1379
+ "learning_rate": 9.18275135103409e-06,
1380
+ "loss": 0.1166,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.8024439918533605,
1385
+ "grad_norm": 0.8769448196441653,
1386
+ "learning_rate": 9.169684129685099e-06,
1387
+ "loss": 0.1317,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.8065173116089613,
1392
+ "grad_norm": 1.3681899543939136,
1393
+ "learning_rate": 9.156522719557428e-06,
1394
+ "loss": 0.1892,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.8105906313645621,
1399
+ "grad_norm": 1.0165895452906009,
1400
+ "learning_rate": 9.143267417953486e-06,
1401
+ "loss": 0.1526,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.814663951120163,
1406
+ "grad_norm": 0.9252869599364745,
1407
+ "learning_rate": 9.129918524296596e-06,
1408
+ "loss": 0.1791,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.8187372708757638,
1413
+ "grad_norm": 0.7566289195807724,
1414
+ "learning_rate": 9.11647634012422e-06,
1415
+ "loss": 0.1018,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.8228105906313645,
1420
+ "grad_norm": 0.7097020344942068,
1421
+ "learning_rate": 9.102941169081167e-06,
1422
+ "loss": 0.1174,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.8268839103869654,
1427
+ "grad_norm": 0.8335131746923946,
1428
+ "learning_rate": 9.089313316912708e-06,
1429
+ "loss": 0.14,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.8309572301425662,
1434
+ "grad_norm": 0.7934600650652943,
1435
+ "learning_rate": 9.075593091457692e-06,
1436
+ "loss": 0.1208,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.835030549898167,
1441
+ "grad_norm": 0.7614374059129773,
1442
+ "learning_rate": 9.061780802641582e-06,
1443
+ "loss": 0.1166,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.8391038696537678,
1448
+ "grad_norm": 0.7158974362347166,
1449
+ "learning_rate": 9.047876762469451e-06,
1450
+ "loss": 0.1046,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.8431771894093686,
1455
+ "grad_norm": 0.676023527010282,
1456
+ "learning_rate": 9.033881285018945e-06,
1457
+ "loss": 0.1049,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.8472505091649695,
1462
+ "grad_norm": 1.0542817712970116,
1463
+ "learning_rate": 9.019794686433174e-06,
1464
+ "loss": 0.1605,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.8513238289205702,
1469
+ "grad_norm": 0.791238316768574,
1470
+ "learning_rate": 9.005617284913586e-06,
1471
+ "loss": 0.1008,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.8553971486761711,
1476
+ "grad_norm": 1.3679274286147247,
1477
+ "learning_rate": 8.991349400712772e-06,
1478
+ "loss": 0.1174,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.8594704684317719,
1483
+ "grad_norm": 0.8904165376343479,
1484
+ "learning_rate": 8.976991356127225e-06,
1485
+ "loss": 0.1252,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.8635437881873728,
1490
+ "grad_norm": 0.6365058101639782,
1491
+ "learning_rate": 8.962543475490068e-06,
1492
+ "loss": 0.1054,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.8676171079429735,
1497
+ "grad_norm": 0.6899915324730952,
1498
+ "learning_rate": 8.948006085163735e-06,
1499
+ "loss": 0.1059,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.8716904276985743,
1504
+ "grad_norm": 0.7033665303348221,
1505
+ "learning_rate": 8.933379513532575e-06,
1506
+ "loss": 0.1055,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.8757637474541752,
1511
+ "grad_norm": 0.7051229848942461,
1512
+ "learning_rate": 8.91866409099546e-06,
1513
+ "loss": 0.1047,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.879837067209776,
1518
+ "grad_norm": 0.7365152922519815,
1519
+ "learning_rate": 8.903860149958308e-06,
1520
+ "loss": 0.1028,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.8839103869653768,
1525
+ "grad_norm": 0.8798834115379963,
1526
+ "learning_rate": 8.888968024826575e-06,
1527
+ "loss": 0.131,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.8879837067209776,
1532
+ "grad_norm": 0.8127281754244611,
1533
+ "learning_rate": 8.873988051997702e-06,
1534
+ "loss": 0.1014,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.8920570264765784,
1539
+ "grad_norm": 0.841292566312256,
1540
+ "learning_rate": 8.85892056985352e-06,
1541
+ "loss": 0.1335,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.8961303462321792,
1546
+ "grad_norm": 1.3435689868107352,
1547
+ "learning_rate": 8.8437659187526e-06,
1548
+ "loss": 0.2286,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.90020366598778,
1553
+ "grad_norm": 1.8444300521677208,
1554
+ "learning_rate": 8.828524441022575e-06,
1555
+ "loss": 0.1827,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.9042769857433809,
1560
+ "grad_norm": 0.7545922474592645,
1561
+ "learning_rate": 8.813196480952393e-06,
1562
+ "loss": 0.1027,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.9083503054989817,
1567
+ "grad_norm": 0.75537983489465,
1568
+ "learning_rate": 8.797782384784549e-06,
1569
+ "loss": 0.1198,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.9124236252545825,
1574
+ "grad_norm": 0.8104999041705286,
1575
+ "learning_rate": 8.782282500707262e-06,
1576
+ "loss": 0.1029,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.9164969450101833,
1581
+ "grad_norm": 0.8405282400775482,
1582
+ "learning_rate": 8.766697178846611e-06,
1583
+ "loss": 0.1241,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.9205702647657841,
1588
+ "grad_norm": 1.013551552697806,
1589
+ "learning_rate": 8.751026771258622e-06,
1590
+ "loss": 0.1343,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.924643584521385,
1595
+ "grad_norm": 0.6728989996123187,
1596
+ "learning_rate": 8.735271631921322e-06,
1597
+ "loss": 0.1058,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.9287169042769857,
1602
+ "grad_norm": 0.8690442261224494,
1603
+ "learning_rate": 8.719432116726738e-06,
1604
+ "loss": 0.1332,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.9327902240325866,
1609
+ "grad_norm": 0.9449187305589617,
1610
+ "learning_rate": 8.703508583472855e-06,
1611
+ "loss": 0.1451,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.9368635437881874,
1616
+ "grad_norm": 0.8067318337898685,
1617
+ "learning_rate": 8.68750139185554e-06,
1618
+ "loss": 0.1248,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.9409368635437881,
1623
+ "grad_norm": 0.7905017587261095,
1624
+ "learning_rate": 8.671410903460416e-06,
1625
+ "loss": 0.119,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.945010183299389,
1630
+ "grad_norm": 1.1238154965476772,
1631
+ "learning_rate": 8.65523748175469e-06,
1632
+ "loss": 0.1559,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.9490835030549898,
1637
+ "grad_norm": 1.1027211644152675,
1638
+ "learning_rate": 8.63898149207895e-06,
1639
+ "loss": 0.1693,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.9531568228105907,
1644
+ "grad_norm": 0.9411765578825619,
1645
+ "learning_rate": 8.622643301638902e-06,
1646
+ "loss": 0.1346,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.9572301425661914,
1651
+ "grad_norm": 0.6884466751221227,
1652
+ "learning_rate": 8.606223279497081e-06,
1653
+ "loss": 0.0968,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.9613034623217923,
1658
+ "grad_norm": 0.7219918781543078,
1659
+ "learning_rate": 8.589721796564521e-06,
1660
+ "loss": 0.0966,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.9653767820773931,
1665
+ "grad_norm": 0.7967809896092082,
1666
+ "learning_rate": 8.57313922559236e-06,
1667
+ "loss": 0.1201,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.9694501018329938,
1672
+ "grad_norm": 0.8113807921190012,
1673
+ "learning_rate": 8.556475941163436e-06,
1674
+ "loss": 0.1097,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.9735234215885947,
1679
+ "grad_norm": 1.0943551126152973,
1680
+ "learning_rate": 8.539732319683817e-06,
1681
+ "loss": 0.1552,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.9775967413441955,
1686
+ "grad_norm": 0.7854046329247982,
1687
+ "learning_rate": 8.5229087393743e-06,
1688
+ "loss": 0.1138,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.9816700610997964,
1693
+ "grad_norm": 1.1720562073286809,
1694
+ "learning_rate": 8.506005580261872e-06,
1695
+ "loss": 0.1525,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.9857433808553971,
1700
+ "grad_norm": 0.718895289386658,
1701
+ "learning_rate": 8.489023224171114e-06,
1702
+ "loss": 0.1082,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.9898167006109979,
1707
+ "grad_norm": 0.613834884154541,
1708
+ "learning_rate": 8.47196205471559e-06,
1709
+ "loss": 0.0877,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.9938900203665988,
1714
+ "grad_norm": 0.9789990123927295,
1715
+ "learning_rate": 8.45482245728917e-06,
1716
+ "loss": 0.1675,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.9979633401221996,
1721
+ "grad_norm": 1.5580291175140415,
1722
+ "learning_rate": 8.437604819057336e-06,
1723
+ "loss": 0.15,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 1.0020366598778003,
1728
+ "grad_norm": 0.7685763736473359,
1729
+ "learning_rate": 8.420309528948422e-06,
1730
+ "loss": 0.1072,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 1.0061099796334012,
1735
+ "grad_norm": 0.6434124354999965,
1736
+ "learning_rate": 8.40293697764484e-06,
1737
+ "loss": 0.0844,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 1.010183299389002,
1742
+ "grad_norm": 0.5841852692369695,
1743
+ "learning_rate": 8.385487557574253e-06,
1744
+ "loss": 0.0859,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 1.0142566191446027,
1749
+ "grad_norm": 0.6061435282600086,
1750
+ "learning_rate": 8.367961662900704e-06,
1751
+ "loss": 0.0809,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 1.0183299389002036,
1756
+ "grad_norm": 0.8866327026089017,
1757
+ "learning_rate": 8.35035968951572e-06,
1758
+ "loss": 0.0996,
1759
+ "step": 250
1760
+ }
1761
+ ],
1762
+ "logging_steps": 1,
1763
+ "max_steps": 735,
1764
+ "num_input_tokens_seen": 0,
1765
+ "num_train_epochs": 3,
1766
+ "save_steps": 250,
1767
+ "stateful_callbacks": {
1768
+ "TrainerControl": {
1769
+ "args": {
1770
+ "should_epoch_stop": false,
1771
+ "should_evaluate": false,
1772
+ "should_log": false,
1773
+ "should_save": true,
1774
+ "should_training_stop": false
1775
+ },
1776
+ "attributes": {}
1777
+ }
1778
+ },
1779
+ "total_flos": 16335919841280.0,
1780
+ "train_batch_size": 1,
1781
+ "trial_name": null,
1782
+ "trial_params": null
1783
+ }
checkpoint-250/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:266201b4dbff74ad87f1a11f3b724a4866069747c79f60058f5aae5f6e7c094d
3
+ size 7416
checkpoint-250/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-500/generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.45.0"
12
+ }
checkpoint-500/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step500
checkpoint-500/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
checkpoint-500/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbab71d98a3a9a92df82a6bba463947327c3a1bcf35cd9f4f46114641fc42dd9
3
+ size 15984
checkpoint-500/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caac82d57d878d30219a4f9ec289a97ff90c53afc160b968f251b3fd3454b8d8
3
+ size 15984
checkpoint-500/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c71152053553e6e22d670fbc4fd7550bf8a046b54cad7b71869787986a6a42c
3
+ size 15984
checkpoint-500/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0366598778004072,
5
+ "eval_steps": 500,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.004073319755600814,
13
+ "grad_norm": 14.739597738910254,
14
+ "learning_rate": 1.3513513513513515e-07,
15
+ "loss": 0.3301,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.008146639511201629,
20
+ "grad_norm": 12.452379475537562,
21
+ "learning_rate": 2.702702702702703e-07,
22
+ "loss": 0.3036,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.012219959266802444,
27
+ "grad_norm": 12.86836901323053,
28
+ "learning_rate": 4.0540540540540546e-07,
29
+ "loss": 0.3424,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.016293279022403257,
34
+ "grad_norm": 13.43090696417895,
35
+ "learning_rate": 5.405405405405406e-07,
36
+ "loss": 0.3184,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.020366598778004074,
41
+ "grad_norm": 14.809270827070751,
42
+ "learning_rate": 6.756756756756758e-07,
43
+ "loss": 0.3138,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.024439918533604887,
48
+ "grad_norm": 12.082295065079254,
49
+ "learning_rate": 8.108108108108109e-07,
50
+ "loss": 0.2982,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.028513238289205704,
55
+ "grad_norm": 8.711027825602685,
56
+ "learning_rate": 9.459459459459461e-07,
57
+ "loss": 0.3063,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.032586558044806514,
62
+ "grad_norm": 7.652261107879573,
63
+ "learning_rate": 1.0810810810810812e-06,
64
+ "loss": 0.2749,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.03665987780040733,
69
+ "grad_norm": 7.726905307446712,
70
+ "learning_rate": 1.2162162162162164e-06,
71
+ "loss": 0.2718,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.04073319755600815,
76
+ "grad_norm": 3.4676017287243446,
77
+ "learning_rate": 1.3513513513513515e-06,
78
+ "loss": 0.2238,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.04480651731160896,
83
+ "grad_norm": 4.29492237739491,
84
+ "learning_rate": 1.4864864864864868e-06,
85
+ "loss": 0.2513,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.048879837067209775,
90
+ "grad_norm": 3.5844077505877707,
91
+ "learning_rate": 1.6216216216216219e-06,
92
+ "loss": 0.2327,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.05295315682281059,
97
+ "grad_norm": 7.031113851112456,
98
+ "learning_rate": 1.756756756756757e-06,
99
+ "loss": 0.239,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.05702647657841141,
104
+ "grad_norm": 7.210450292846676,
105
+ "learning_rate": 1.8918918918918922e-06,
106
+ "loss": 0.277,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.06109979633401222,
111
+ "grad_norm": 6.526062178388152,
112
+ "learning_rate": 2.0270270270270273e-06,
113
+ "loss": 0.2495,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.06517311608961303,
118
+ "grad_norm": 5.157530413977274,
119
+ "learning_rate": 2.1621621621621623e-06,
120
+ "loss": 0.2425,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.06924643584521385,
125
+ "grad_norm": 3.242500698401516,
126
+ "learning_rate": 2.297297297297298e-06,
127
+ "loss": 0.1985,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.07331975560081466,
132
+ "grad_norm": 2.554097363562634,
133
+ "learning_rate": 2.432432432432433e-06,
134
+ "loss": 0.1822,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.07739307535641547,
139
+ "grad_norm": 2.6535341941648047,
140
+ "learning_rate": 2.5675675675675675e-06,
141
+ "loss": 0.2252,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.0814663951120163,
146
+ "grad_norm": 2.5516965886789076,
147
+ "learning_rate": 2.702702702702703e-06,
148
+ "loss": 0.1862,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0855397148676171,
153
+ "grad_norm": 2.6017363031504264,
154
+ "learning_rate": 2.837837837837838e-06,
155
+ "loss": 0.2098,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.08961303462321792,
160
+ "grad_norm": 2.0129035331912184,
161
+ "learning_rate": 2.9729729729729736e-06,
162
+ "loss": 0.1699,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.09368635437881874,
167
+ "grad_norm": 1.849938821231628,
168
+ "learning_rate": 3.1081081081081082e-06,
169
+ "loss": 0.1868,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.09775967413441955,
174
+ "grad_norm": 1.764863585345639,
175
+ "learning_rate": 3.2432432432432437e-06,
176
+ "loss": 0.1669,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.10183299389002037,
181
+ "grad_norm": 1.8494325730642949,
182
+ "learning_rate": 3.3783783783783788e-06,
183
+ "loss": 0.1507,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.10590631364562118,
188
+ "grad_norm": 1.6304914383856781,
189
+ "learning_rate": 3.513513513513514e-06,
190
+ "loss": 0.1534,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.109979633401222,
195
+ "grad_norm": 1.4579913516119778,
196
+ "learning_rate": 3.648648648648649e-06,
197
+ "loss": 0.1387,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.11405295315682282,
202
+ "grad_norm": 1.6082049119577289,
203
+ "learning_rate": 3.7837837837837844e-06,
204
+ "loss": 0.1406,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.11812627291242363,
209
+ "grad_norm": 1.4819461102449234,
210
+ "learning_rate": 3.918918918918919e-06,
211
+ "loss": 0.1323,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.12219959266802444,
216
+ "grad_norm": 1.7009165157092279,
217
+ "learning_rate": 4.0540540540540545e-06,
218
+ "loss": 0.1577,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.12627291242362526,
223
+ "grad_norm": 1.5721048343370418,
224
+ "learning_rate": 4.189189189189189e-06,
225
+ "loss": 0.1345,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.13034623217922606,
230
+ "grad_norm": 1.5868902144082508,
231
+ "learning_rate": 4.324324324324325e-06,
232
+ "loss": 0.1641,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.13441955193482688,
237
+ "grad_norm": 1.367409491711825,
238
+ "learning_rate": 4.45945945945946e-06,
239
+ "loss": 0.1568,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.1384928716904277,
244
+ "grad_norm": 1.2082341226617432,
245
+ "learning_rate": 4.594594594594596e-06,
246
+ "loss": 0.1158,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.1425661914460285,
251
+ "grad_norm": 1.2834846670425744,
252
+ "learning_rate": 4.72972972972973e-06,
253
+ "loss": 0.1553,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.14663951120162932,
258
+ "grad_norm": 1.4278045526468992,
259
+ "learning_rate": 4.864864864864866e-06,
260
+ "loss": 0.1472,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.15071283095723015,
265
+ "grad_norm": 1.1433863309324082,
266
+ "learning_rate": 5e-06,
267
+ "loss": 0.1216,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.15478615071283094,
272
+ "grad_norm": 1.2556861775151085,
273
+ "learning_rate": 5.135135135135135e-06,
274
+ "loss": 0.1383,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.15885947046843177,
279
+ "grad_norm": 1.1940515610624718,
280
+ "learning_rate": 5.2702702702702705e-06,
281
+ "loss": 0.1488,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.1629327902240326,
286
+ "grad_norm": 1.365361196469323,
287
+ "learning_rate": 5.405405405405406e-06,
288
+ "loss": 0.1658,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.1670061099796334,
293
+ "grad_norm": 1.6375597676471598,
294
+ "learning_rate": 5.540540540540541e-06,
295
+ "loss": 0.1244,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.1710794297352342,
300
+ "grad_norm": 1.058410205986207,
301
+ "learning_rate": 5.675675675675676e-06,
302
+ "loss": 0.1129,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.17515274949083504,
307
+ "grad_norm": 1.468616447672182,
308
+ "learning_rate": 5.810810810810811e-06,
309
+ "loss": 0.176,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.17922606924643583,
314
+ "grad_norm": 1.1292066998688302,
315
+ "learning_rate": 5.945945945945947e-06,
316
+ "loss": 0.1235,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.18329938900203666,
321
+ "grad_norm": 1.1790440780653373,
322
+ "learning_rate": 6.081081081081082e-06,
323
+ "loss": 0.1352,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.18737270875763748,
328
+ "grad_norm": 1.144770740193701,
329
+ "learning_rate": 6.2162162162162164e-06,
330
+ "loss": 0.1375,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.19144602851323828,
335
+ "grad_norm": 1.3169675540020822,
336
+ "learning_rate": 6.351351351351351e-06,
337
+ "loss": 0.1451,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.1955193482688391,
342
+ "grad_norm": 1.1364743430386761,
343
+ "learning_rate": 6.486486486486487e-06,
344
+ "loss": 0.1073,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.19959266802443992,
349
+ "grad_norm": 1.3532964160734307,
350
+ "learning_rate": 6.621621621621622e-06,
351
+ "loss": 0.1502,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.20366598778004075,
356
+ "grad_norm": 1.1049371458723167,
357
+ "learning_rate": 6.7567567567567575e-06,
358
+ "loss": 0.116,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.20773930753564154,
363
+ "grad_norm": 1.0634720045604809,
364
+ "learning_rate": 6.891891891891892e-06,
365
+ "loss": 0.1438,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.21181262729124237,
370
+ "grad_norm": 1.1677623232682453,
371
+ "learning_rate": 7.027027027027028e-06,
372
+ "loss": 0.1143,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.2158859470468432,
377
+ "grad_norm": 1.2552603959178812,
378
+ "learning_rate": 7.162162162162163e-06,
379
+ "loss": 0.1443,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.219959266802444,
384
+ "grad_norm": 1.1556616828254782,
385
+ "learning_rate": 7.297297297297298e-06,
386
+ "loss": 0.1341,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.2240325865580448,
391
+ "grad_norm": 1.1241236805182522,
392
+ "learning_rate": 7.4324324324324324e-06,
393
+ "loss": 0.1283,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.22810590631364563,
398
+ "grad_norm": 0.9867741809756463,
399
+ "learning_rate": 7.567567567567569e-06,
400
+ "loss": 0.1302,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.23217922606924643,
405
+ "grad_norm": 1.0672327000495885,
406
+ "learning_rate": 7.702702702702704e-06,
407
+ "loss": 0.113,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.23625254582484725,
412
+ "grad_norm": 1.0659735135074857,
413
+ "learning_rate": 7.837837837837838e-06,
414
+ "loss": 0.1293,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.24032586558044808,
419
+ "grad_norm": 1.2422197356017706,
420
+ "learning_rate": 7.972972972972974e-06,
421
+ "loss": 0.164,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.24439918533604887,
426
+ "grad_norm": 1.3538609671806645,
427
+ "learning_rate": 8.108108108108109e-06,
428
+ "loss": 0.1548,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.2484725050916497,
433
+ "grad_norm": 1.0759558101958346,
434
+ "learning_rate": 8.243243243243245e-06,
435
+ "loss": 0.1225,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.2525458248472505,
440
+ "grad_norm": 1.1244956381449198,
441
+ "learning_rate": 8.378378378378378e-06,
442
+ "loss": 0.1175,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.25661914460285135,
447
+ "grad_norm": 1.171629685706723,
448
+ "learning_rate": 8.513513513513514e-06,
449
+ "loss": 0.1204,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.2606924643584521,
454
+ "grad_norm": 1.2905585681894916,
455
+ "learning_rate": 8.64864864864865e-06,
456
+ "loss": 0.1253,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.26476578411405294,
461
+ "grad_norm": 1.3979008428570314,
462
+ "learning_rate": 8.783783783783785e-06,
463
+ "loss": 0.191,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.26883910386965376,
468
+ "grad_norm": 1.226756333773235,
469
+ "learning_rate": 8.91891891891892e-06,
470
+ "loss": 0.1287,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.2729124236252546,
475
+ "grad_norm": 1.2835470528218054,
476
+ "learning_rate": 9.054054054054054e-06,
477
+ "loss": 0.138,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.2769857433808554,
482
+ "grad_norm": 1.1622195270679896,
483
+ "learning_rate": 9.189189189189191e-06,
484
+ "loss": 0.1259,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.28105906313645623,
489
+ "grad_norm": 1.1512666578576678,
490
+ "learning_rate": 9.324324324324325e-06,
491
+ "loss": 0.1292,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.285132382892057,
496
+ "grad_norm": 0.9695391815507838,
497
+ "learning_rate": 9.45945945945946e-06,
498
+ "loss": 0.1142,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2892057026476578,
503
+ "grad_norm": 1.1262409828408337,
504
+ "learning_rate": 9.594594594594594e-06,
505
+ "loss": 0.1188,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.29327902240325865,
510
+ "grad_norm": 0.9820966211674147,
511
+ "learning_rate": 9.729729729729732e-06,
512
+ "loss": 0.1052,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.2973523421588595,
517
+ "grad_norm": 1.1058230077470572,
518
+ "learning_rate": 9.864864864864865e-06,
519
+ "loss": 0.1246,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.3014256619144603,
524
+ "grad_norm": 1.3891942844370528,
525
+ "learning_rate": 1e-05,
526
+ "loss": 0.1651,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.3054989816700611,
531
+ "grad_norm": 1.1373599847305171,
532
+ "learning_rate": 9.99994352762958e-06,
533
+ "loss": 0.1259,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.3095723014256619,
538
+ "grad_norm": 1.0803757941511039,
539
+ "learning_rate": 9.999774111793974e-06,
540
+ "loss": 0.1485,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.3136456211812627,
545
+ "grad_norm": 1.509987566205336,
546
+ "learning_rate": 9.999491756320105e-06,
547
+ "loss": 0.1708,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.31771894093686354,
552
+ "grad_norm": 1.3769318827034491,
553
+ "learning_rate": 9.99909646758609e-06,
554
+ "loss": 0.1483,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.32179226069246436,
559
+ "grad_norm": 0.9995516357476201,
560
+ "learning_rate": 9.99858825452108e-06,
561
+ "loss": 0.1124,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.3258655804480652,
566
+ "grad_norm": 1.4328593788226842,
567
+ "learning_rate": 9.997967128605078e-06,
568
+ "loss": 0.1849,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.329938900203666,
573
+ "grad_norm": 1.0397129864144867,
574
+ "learning_rate": 9.997233103868664e-06,
575
+ "loss": 0.1199,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.3340122199592668,
580
+ "grad_norm": 1.3312975796955133,
581
+ "learning_rate": 9.996386196892683e-06,
582
+ "loss": 0.1748,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.3380855397148676,
587
+ "grad_norm": 1.2070448028045222,
588
+ "learning_rate": 9.995426426807875e-06,
589
+ "loss": 0.1449,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.3421588594704684,
594
+ "grad_norm": 0.9786604342473315,
595
+ "learning_rate": 9.994353815294438e-06,
596
+ "loss": 0.1349,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.34623217922606925,
601
+ "grad_norm": 1.16279378070579,
602
+ "learning_rate": 9.993168386581533e-06,
603
+ "loss": 0.1111,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.35030549898167007,
608
+ "grad_norm": 1.0832386326974766,
609
+ "learning_rate": 9.991870167446751e-06,
610
+ "loss": 0.1271,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.3543788187372709,
615
+ "grad_norm": 1.076044536856832,
616
+ "learning_rate": 9.990459187215498e-06,
617
+ "loss": 0.122,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.35845213849287166,
622
+ "grad_norm": 1.1390626595350608,
623
+ "learning_rate": 9.98893547776033e-06,
624
+ "loss": 0.1429,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.3625254582484725,
629
+ "grad_norm": 1.2799324833393828,
630
+ "learning_rate": 9.987299073500245e-06,
631
+ "loss": 0.1789,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.3665987780040733,
636
+ "grad_norm": 1.0088789278468007,
637
+ "learning_rate": 9.985550011399889e-06,
638
+ "loss": 0.1217,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.37067209775967414,
643
+ "grad_norm": 1.0635380396962304,
644
+ "learning_rate": 9.98368833096874e-06,
645
+ "loss": 0.1517,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.37474541751527496,
650
+ "grad_norm": 1.1149195586496816,
651
+ "learning_rate": 9.981714074260196e-06,
652
+ "loss": 0.1648,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.3788187372708758,
657
+ "grad_norm": 0.9770064004740078,
658
+ "learning_rate": 9.979627285870644e-06,
659
+ "loss": 0.1173,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.38289205702647655,
664
+ "grad_norm": 1.5786545324573935,
665
+ "learning_rate": 9.977428012938437e-06,
666
+ "loss": 0.2148,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.3869653767820774,
671
+ "grad_norm": 0.9445672697637628,
672
+ "learning_rate": 9.975116305142836e-06,
673
+ "loss": 0.1272,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.3910386965376782,
678
+ "grad_norm": 0.832092882135511,
679
+ "learning_rate": 9.97269221470289e-06,
680
+ "loss": 0.1149,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.395112016293279,
685
+ "grad_norm": 0.8009975217381654,
686
+ "learning_rate": 9.97015579637625e-06,
687
+ "loss": 0.1081,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.39918533604887985,
692
+ "grad_norm": 0.909000272396086,
693
+ "learning_rate": 9.967507107457942e-06,
694
+ "loss": 0.1249,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.40325865580448067,
699
+ "grad_norm": 0.9894702747295367,
700
+ "learning_rate": 9.96474620777906e-06,
701
+ "loss": 0.1404,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.4073319755600815,
706
+ "grad_norm": 1.1517905886733883,
707
+ "learning_rate": 9.961873159705426e-06,
708
+ "loss": 0.1433,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.41140529531568226,
713
+ "grad_norm": 1.2806427058824508,
714
+ "learning_rate": 9.95888802813617e-06,
715
+ "loss": 0.1723,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.4154786150712831,
720
+ "grad_norm": 0.919332585767889,
721
+ "learning_rate": 9.955790880502278e-06,
722
+ "loss": 0.1219,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.4195519348268839,
727
+ "grad_norm": 0.8901964293186232,
728
+ "learning_rate": 9.952581786765057e-06,
729
+ "loss": 0.1157,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.42362525458248473,
734
+ "grad_norm": 1.3877972822654616,
735
+ "learning_rate": 9.949260819414557e-06,
736
+ "loss": 0.1642,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.42769857433808556,
741
+ "grad_norm": 0.9602184939318458,
742
+ "learning_rate": 9.945828053467939e-06,
743
+ "loss": 0.1224,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.4317718940936864,
748
+ "grad_norm": 1.230791876608231,
749
+ "learning_rate": 9.942283566467773e-06,
750
+ "loss": 0.1596,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.43584521384928715,
755
+ "grad_norm": 1.1454248942159495,
756
+ "learning_rate": 9.938627438480295e-06,
757
+ "loss": 0.1541,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.439918533604888,
762
+ "grad_norm": 1.0873300186194603,
763
+ "learning_rate": 9.93485975209359e-06,
764
+ "loss": 0.1533,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.4439918533604888,
769
+ "grad_norm": 0.9668569607934798,
770
+ "learning_rate": 9.930980592415728e-06,
771
+ "loss": 0.1539,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.4480651731160896,
776
+ "grad_norm": 1.487429443095859,
777
+ "learning_rate": 9.926990047072849e-06,
778
+ "loss": 0.2379,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.45213849287169044,
783
+ "grad_norm": 1.036501582869458,
784
+ "learning_rate": 9.922888206207174e-06,
785
+ "loss": 0.1181,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.45621181262729127,
790
+ "grad_norm": 0.9427386345315173,
791
+ "learning_rate": 9.918675162474974e-06,
792
+ "loss": 0.1157,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.46028513238289204,
797
+ "grad_norm": 1.1671785006625848,
798
+ "learning_rate": 9.914351011044472e-06,
799
+ "loss": 0.1671,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.46435845213849286,
804
+ "grad_norm": 0.8485104800209154,
805
+ "learning_rate": 9.909915849593705e-06,
806
+ "loss": 0.1094,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.4684317718940937,
811
+ "grad_norm": 0.895507646361391,
812
+ "learning_rate": 9.905369778308304e-06,
813
+ "loss": 0.1205,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.4725050916496945,
818
+ "grad_norm": 1.1024237478073182,
819
+ "learning_rate": 9.900712899879237e-06,
820
+ "loss": 0.1551,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.47657841140529533,
825
+ "grad_norm": 1.0811464118865846,
826
+ "learning_rate": 9.895945319500488e-06,
827
+ "loss": 0.1402,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.48065173116089616,
832
+ "grad_norm": 0.9829410685047446,
833
+ "learning_rate": 9.891067144866687e-06,
834
+ "loss": 0.1381,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.4847250509164969,
839
+ "grad_norm": 0.8855824729064482,
840
+ "learning_rate": 9.886078486170665e-06,
841
+ "loss": 0.1038,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.48879837067209775,
846
+ "grad_norm": 1.1091690462920576,
847
+ "learning_rate": 9.880979456100974e-06,
848
+ "loss": 0.1372,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.49287169042769857,
853
+ "grad_norm": 0.907049897730717,
854
+ "learning_rate": 9.875770169839343e-06,
855
+ "loss": 0.1322,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.4969450101832994,
860
+ "grad_norm": 1.0224824312976686,
861
+ "learning_rate": 9.870450745058066e-06,
862
+ "loss": 0.1257,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.5010183299389002,
867
+ "grad_norm": 1.0439109698157967,
868
+ "learning_rate": 9.865021301917358e-06,
869
+ "loss": 0.1317,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.505091649694501,
874
+ "grad_norm": 0.8972366065592501,
875
+ "learning_rate": 9.859481963062623e-06,
876
+ "loss": 0.1104,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.5091649694501018,
881
+ "grad_norm": 0.916952485621608,
882
+ "learning_rate": 9.853832853621703e-06,
883
+ "loss": 0.124,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.5132382892057027,
888
+ "grad_norm": 0.7586835858660547,
889
+ "learning_rate": 9.848074101202037e-06,
890
+ "loss": 0.1191,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.5173116089613035,
895
+ "grad_norm": 0.9149593226270635,
896
+ "learning_rate": 9.842205835887785e-06,
897
+ "loss": 0.1188,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.5213849287169042,
902
+ "grad_norm": 0.9483144871900878,
903
+ "learning_rate": 9.836228190236892e-06,
904
+ "loss": 0.1392,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.5254582484725051,
909
+ "grad_norm": 1.1137009286811568,
910
+ "learning_rate": 9.83014129927808e-06,
911
+ "loss": 0.1331,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.5295315682281059,
916
+ "grad_norm": 1.0049886812823983,
917
+ "learning_rate": 9.823945300507815e-06,
918
+ "loss": 0.1393,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.5336048879837068,
923
+ "grad_norm": 1.0017821694016227,
924
+ "learning_rate": 9.817640333887194e-06,
925
+ "loss": 0.1376,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.5376782077393075,
930
+ "grad_norm": 0.8770993451067021,
931
+ "learning_rate": 9.81122654183878e-06,
932
+ "loss": 0.1075,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.5417515274949084,
937
+ "grad_norm": 0.8112662923925413,
938
+ "learning_rate": 9.804704069243389e-06,
939
+ "loss": 0.1149,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.5458248472505092,
944
+ "grad_norm": 0.7783508225595258,
945
+ "learning_rate": 9.798073063436815e-06,
946
+ "loss": 0.1077,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.5498981670061099,
951
+ "grad_norm": 1.6671316247114485,
952
+ "learning_rate": 9.791333674206507e-06,
953
+ "loss": 0.1892,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.5539714867617108,
958
+ "grad_norm": 0.8856245620297392,
959
+ "learning_rate": 9.784486053788179e-06,
960
+ "loss": 0.1075,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.5580448065173116,
965
+ "grad_norm": 2.0578900491298824,
966
+ "learning_rate": 9.77753035686237e-06,
967
+ "loss": 0.1472,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.5621181262729125,
972
+ "grad_norm": 1.148525636808097,
973
+ "learning_rate": 9.770466740550963e-06,
974
+ "loss": 0.1598,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.5661914460285132,
979
+ "grad_norm": 0.8665254831769179,
980
+ "learning_rate": 9.763295364413616e-06,
981
+ "loss": 0.1186,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.570264765784114,
986
+ "grad_norm": 1.0970826186220186,
987
+ "learning_rate": 9.756016390444174e-06,
988
+ "loss": 0.1386,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.5743380855397149,
993
+ "grad_norm": 0.9530034310899396,
994
+ "learning_rate": 9.748629983067004e-06,
995
+ "loss": 0.1282,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.5784114052953157,
1000
+ "grad_norm": 1.2706893271757027,
1001
+ "learning_rate": 9.741136309133279e-06,
1002
+ "loss": 0.1754,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.5824847250509165,
1007
+ "grad_norm": 0.9703463762849697,
1008
+ "learning_rate": 9.733535537917211e-06,
1009
+ "loss": 0.1194,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.5865580448065173,
1014
+ "grad_norm": 0.8038414888371753,
1015
+ "learning_rate": 9.725827841112226e-06,
1016
+ "loss": 0.1162,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.5906313645621182,
1021
+ "grad_norm": 0.9411283645508486,
1022
+ "learning_rate": 9.718013392827087e-06,
1023
+ "loss": 0.1121,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.594704684317719,
1028
+ "grad_norm": 1.501666156048829,
1029
+ "learning_rate": 9.710092369581966e-06,
1030
+ "loss": 0.16,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.5987780040733197,
1035
+ "grad_norm": 0.9141719119872903,
1036
+ "learning_rate": 9.702064950304442e-06,
1037
+ "loss": 0.1211,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.6028513238289206,
1042
+ "grad_norm": 0.8652675727574004,
1043
+ "learning_rate": 9.693931316325473e-06,
1044
+ "loss": 0.0946,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.6069246435845214,
1049
+ "grad_norm": 0.7377787499846402,
1050
+ "learning_rate": 9.685691651375297e-06,
1051
+ "loss": 0.1016,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.6109979633401222,
1056
+ "grad_norm": 0.7630312206018969,
1057
+ "learning_rate": 9.677346141579277e-06,
1058
+ "loss": 0.1014,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.615071283095723,
1063
+ "grad_norm": 0.9718289359974593,
1064
+ "learning_rate": 9.668894975453705e-06,
1065
+ "loss": 0.1562,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.6191446028513238,
1070
+ "grad_norm": 1.004301729468449,
1071
+ "learning_rate": 9.66033834390153e-06,
1072
+ "loss": 0.1372,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.6232179226069247,
1077
+ "grad_norm": 0.9350824611493259,
1078
+ "learning_rate": 9.65167644020806e-06,
1079
+ "loss": 0.1254,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.6272912423625254,
1084
+ "grad_norm": 0.7612329276402703,
1085
+ "learning_rate": 9.64290946003659e-06,
1086
+ "loss": 0.0989,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.6313645621181263,
1091
+ "grad_norm": 0.7706614538086551,
1092
+ "learning_rate": 9.63403760142398e-06,
1093
+ "loss": 0.1013,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.6354378818737271,
1098
+ "grad_norm": 1.0210499034582712,
1099
+ "learning_rate": 9.625061064776183e-06,
1100
+ "loss": 0.1134,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.639511201629328,
1105
+ "grad_norm": 0.7560805642981956,
1106
+ "learning_rate": 9.61598005286372e-06,
1107
+ "loss": 0.0939,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.6435845213849287,
1112
+ "grad_norm": 1.0834289937869723,
1113
+ "learning_rate": 9.606794770817102e-06,
1114
+ "loss": 0.1785,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.6476578411405295,
1119
+ "grad_norm": 1.0611196002268826,
1120
+ "learning_rate": 9.597505426122184e-06,
1121
+ "loss": 0.1571,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.6517311608961304,
1126
+ "grad_norm": 1.0914261737532949,
1127
+ "learning_rate": 9.588112228615495e-06,
1128
+ "loss": 0.1745,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.6558044806517311,
1133
+ "grad_norm": 0.953948451978483,
1134
+ "learning_rate": 9.57861539047949e-06,
1135
+ "loss": 0.1353,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.659877800407332,
1140
+ "grad_norm": 1.2562247665468482,
1141
+ "learning_rate": 9.569015126237744e-06,
1142
+ "loss": 0.1521,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.6639511201629328,
1147
+ "grad_norm": 0.8283783602425362,
1148
+ "learning_rate": 9.559311652750135e-06,
1149
+ "loss": 0.1161,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.6680244399185336,
1154
+ "grad_norm": 0.7823509791751794,
1155
+ "learning_rate": 9.549505189207924e-06,
1156
+ "loss": 0.0976,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.6720977596741344,
1161
+ "grad_norm": 1.118258806444578,
1162
+ "learning_rate": 9.539595957128803e-06,
1163
+ "loss": 0.171,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.6761710794297352,
1168
+ "grad_norm": 0.7563799438807557,
1169
+ "learning_rate": 9.529584180351902e-06,
1170
+ "loss": 0.1159,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.6802443991853361,
1175
+ "grad_norm": 1.0059732424782886,
1176
+ "learning_rate": 9.519470085032733e-06,
1177
+ "loss": 0.1278,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.6843177189409368,
1182
+ "grad_norm": 0.8261325503708756,
1183
+ "learning_rate": 9.509253899638066e-06,
1184
+ "loss": 0.104,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.6883910386965377,
1189
+ "grad_norm": 1.1918252125330613,
1190
+ "learning_rate": 9.498935854940785e-06,
1191
+ "loss": 0.1682,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.6924643584521385,
1196
+ "grad_norm": 0.7216709177105455,
1197
+ "learning_rate": 9.488516184014667e-06,
1198
+ "loss": 0.1089,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.6965376782077393,
1203
+ "grad_norm": 0.8952054280934858,
1204
+ "learning_rate": 9.477995122229117e-06,
1205
+ "loss": 0.1521,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.7006109979633401,
1210
+ "grad_norm": 0.6538828419017942,
1211
+ "learning_rate": 9.467372907243858e-06,
1212
+ "loss": 0.1012,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.7046843177189409,
1217
+ "grad_norm": 0.840723056036209,
1218
+ "learning_rate": 9.456649779003548e-06,
1219
+ "loss": 0.117,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.7087576374745418,
1224
+ "grad_norm": 0.7652580794490056,
1225
+ "learning_rate": 9.44582597973238e-06,
1226
+ "loss": 0.1284,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.7128309572301426,
1231
+ "grad_norm": 0.9696904154678632,
1232
+ "learning_rate": 9.434901753928593e-06,
1233
+ "loss": 0.1429,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.7169042769857433,
1238
+ "grad_norm": 0.7509027450046076,
1239
+ "learning_rate": 9.423877348358956e-06,
1240
+ "loss": 0.1006,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.7209775967413442,
1245
+ "grad_norm": 0.6942112976471692,
1246
+ "learning_rate": 9.4127530120532e-06,
1247
+ "loss": 0.1042,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.725050916496945,
1252
+ "grad_norm": 1.4641902043350905,
1253
+ "learning_rate": 9.401528996298375e-06,
1254
+ "loss": 0.1676,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.7291242362525459,
1259
+ "grad_norm": 0.7418396518869238,
1260
+ "learning_rate": 9.390205554633193e-06,
1261
+ "loss": 0.1082,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.7331975560081466,
1266
+ "grad_norm": 1.2074617530849705,
1267
+ "learning_rate": 9.378782942842292e-06,
1268
+ "loss": 0.1401,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.7372708757637475,
1273
+ "grad_norm": 1.2938802390610347,
1274
+ "learning_rate": 9.367261418950459e-06,
1275
+ "loss": 0.1855,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.7413441955193483,
1280
+ "grad_norm": 1.225757248706894,
1281
+ "learning_rate": 9.355641243216798e-06,
1282
+ "loss": 0.1729,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.745417515274949,
1287
+ "grad_norm": 1.1483380054973364,
1288
+ "learning_rate": 9.343922678128854e-06,
1289
+ "loss": 0.1078,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.7494908350305499,
1294
+ "grad_norm": 0.8222440765781929,
1295
+ "learning_rate": 9.332105988396692e-06,
1296
+ "loss": 0.1239,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.7535641547861507,
1301
+ "grad_norm": 0.9655962832595171,
1302
+ "learning_rate": 9.3201914409469e-06,
1303
+ "loss": 0.1309,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.7576374745417516,
1308
+ "grad_norm": 0.8060791719318856,
1309
+ "learning_rate": 9.308179304916573e-06,
1310
+ "loss": 0.1159,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.7617107942973523,
1315
+ "grad_norm": 0.7357782726661909,
1316
+ "learning_rate": 9.29606985164723e-06,
1317
+ "loss": 0.1052,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.7657841140529531,
1322
+ "grad_norm": 0.9536045205176826,
1323
+ "learning_rate": 9.283863354678683e-06,
1324
+ "loss": 0.1351,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.769857433808554,
1329
+ "grad_norm": 0.8771938059672718,
1330
+ "learning_rate": 9.27156008974286e-06,
1331
+ "loss": 0.1304,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.7739307535641547,
1336
+ "grad_norm": 0.7232888469506753,
1337
+ "learning_rate": 9.259160334757575e-06,
1338
+ "loss": 0.1054,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.7780040733197556,
1343
+ "grad_norm": 0.8295211262810136,
1344
+ "learning_rate": 9.246664369820249e-06,
1345
+ "loss": 0.1323,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.7820773930753564,
1350
+ "grad_norm": 1.546126242212441,
1351
+ "learning_rate": 9.234072477201588e-06,
1352
+ "loss": 0.2385,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.7861507128309573,
1357
+ "grad_norm": 1.3189210288828541,
1358
+ "learning_rate": 9.2213849413392e-06,
1359
+ "loss": 0.1312,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.790224032586558,
1364
+ "grad_norm": 0.6640416710388396,
1365
+ "learning_rate": 9.208602048831176e-06,
1366
+ "loss": 0.1032,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.7942973523421588,
1371
+ "grad_norm": 0.7975892776697048,
1372
+ "learning_rate": 9.195724088429611e-06,
1373
+ "loss": 0.1089,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.7983706720977597,
1378
+ "grad_norm": 0.706905690575772,
1379
+ "learning_rate": 9.18275135103409e-06,
1380
+ "loss": 0.1166,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.8024439918533605,
1385
+ "grad_norm": 0.8769448196441653,
1386
+ "learning_rate": 9.169684129685099e-06,
1387
+ "loss": 0.1317,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.8065173116089613,
1392
+ "grad_norm": 1.3681899543939136,
1393
+ "learning_rate": 9.156522719557428e-06,
1394
+ "loss": 0.1892,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.8105906313645621,
1399
+ "grad_norm": 1.0165895452906009,
1400
+ "learning_rate": 9.143267417953486e-06,
1401
+ "loss": 0.1526,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.814663951120163,
1406
+ "grad_norm": 0.9252869599364745,
1407
+ "learning_rate": 9.129918524296596e-06,
1408
+ "loss": 0.1791,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.8187372708757638,
1413
+ "grad_norm": 0.7566289195807724,
1414
+ "learning_rate": 9.11647634012422e-06,
1415
+ "loss": 0.1018,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.8228105906313645,
1420
+ "grad_norm": 0.7097020344942068,
1421
+ "learning_rate": 9.102941169081167e-06,
1422
+ "loss": 0.1174,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.8268839103869654,
1427
+ "grad_norm": 0.8335131746923946,
1428
+ "learning_rate": 9.089313316912708e-06,
1429
+ "loss": 0.14,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.8309572301425662,
1434
+ "grad_norm": 0.7934600650652943,
1435
+ "learning_rate": 9.075593091457692e-06,
1436
+ "loss": 0.1208,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.835030549898167,
1441
+ "grad_norm": 0.7614374059129773,
1442
+ "learning_rate": 9.061780802641582e-06,
1443
+ "loss": 0.1166,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.8391038696537678,
1448
+ "grad_norm": 0.7158974362347166,
1449
+ "learning_rate": 9.047876762469451e-06,
1450
+ "loss": 0.1046,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.8431771894093686,
1455
+ "grad_norm": 0.676023527010282,
1456
+ "learning_rate": 9.033881285018945e-06,
1457
+ "loss": 0.1049,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.8472505091649695,
1462
+ "grad_norm": 1.0542817712970116,
1463
+ "learning_rate": 9.019794686433174e-06,
1464
+ "loss": 0.1605,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.8513238289205702,
1469
+ "grad_norm": 0.791238316768574,
1470
+ "learning_rate": 9.005617284913586e-06,
1471
+ "loss": 0.1008,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.8553971486761711,
1476
+ "grad_norm": 1.3679274286147247,
1477
+ "learning_rate": 8.991349400712772e-06,
1478
+ "loss": 0.1174,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.8594704684317719,
1483
+ "grad_norm": 0.8904165376343479,
1484
+ "learning_rate": 8.976991356127225e-06,
1485
+ "loss": 0.1252,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.8635437881873728,
1490
+ "grad_norm": 0.6365058101639782,
1491
+ "learning_rate": 8.962543475490068e-06,
1492
+ "loss": 0.1054,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.8676171079429735,
1497
+ "grad_norm": 0.6899915324730952,
1498
+ "learning_rate": 8.948006085163735e-06,
1499
+ "loss": 0.1059,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.8716904276985743,
1504
+ "grad_norm": 0.7033665303348221,
1505
+ "learning_rate": 8.933379513532575e-06,
1506
+ "loss": 0.1055,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.8757637474541752,
1511
+ "grad_norm": 0.7051229848942461,
1512
+ "learning_rate": 8.91866409099546e-06,
1513
+ "loss": 0.1047,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.879837067209776,
1518
+ "grad_norm": 0.7365152922519815,
1519
+ "learning_rate": 8.903860149958308e-06,
1520
+ "loss": 0.1028,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.8839103869653768,
1525
+ "grad_norm": 0.8798834115379963,
1526
+ "learning_rate": 8.888968024826575e-06,
1527
+ "loss": 0.131,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.8879837067209776,
1532
+ "grad_norm": 0.8127281754244611,
1533
+ "learning_rate": 8.873988051997702e-06,
1534
+ "loss": 0.1014,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.8920570264765784,
1539
+ "grad_norm": 0.841292566312256,
1540
+ "learning_rate": 8.85892056985352e-06,
1541
+ "loss": 0.1335,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.8961303462321792,
1546
+ "grad_norm": 1.3435689868107352,
1547
+ "learning_rate": 8.8437659187526e-06,
1548
+ "loss": 0.2286,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.90020366598778,
1553
+ "grad_norm": 1.8444300521677208,
1554
+ "learning_rate": 8.828524441022575e-06,
1555
+ "loss": 0.1827,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.9042769857433809,
1560
+ "grad_norm": 0.7545922474592645,
1561
+ "learning_rate": 8.813196480952393e-06,
1562
+ "loss": 0.1027,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.9083503054989817,
1567
+ "grad_norm": 0.75537983489465,
1568
+ "learning_rate": 8.797782384784549e-06,
1569
+ "loss": 0.1198,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.9124236252545825,
1574
+ "grad_norm": 0.8104999041705286,
1575
+ "learning_rate": 8.782282500707262e-06,
1576
+ "loss": 0.1029,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.9164969450101833,
1581
+ "grad_norm": 0.8405282400775482,
1582
+ "learning_rate": 8.766697178846611e-06,
1583
+ "loss": 0.1241,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.9205702647657841,
1588
+ "grad_norm": 1.013551552697806,
1589
+ "learning_rate": 8.751026771258622e-06,
1590
+ "loss": 0.1343,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.924643584521385,
1595
+ "grad_norm": 0.6728989996123187,
1596
+ "learning_rate": 8.735271631921322e-06,
1597
+ "loss": 0.1058,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.9287169042769857,
1602
+ "grad_norm": 0.8690442261224494,
1603
+ "learning_rate": 8.719432116726738e-06,
1604
+ "loss": 0.1332,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.9327902240325866,
1609
+ "grad_norm": 0.9449187305589617,
1610
+ "learning_rate": 8.703508583472855e-06,
1611
+ "loss": 0.1451,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.9368635437881874,
1616
+ "grad_norm": 0.8067318337898685,
1617
+ "learning_rate": 8.68750139185554e-06,
1618
+ "loss": 0.1248,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.9409368635437881,
1623
+ "grad_norm": 0.7905017587261095,
1624
+ "learning_rate": 8.671410903460416e-06,
1625
+ "loss": 0.119,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.945010183299389,
1630
+ "grad_norm": 1.1238154965476772,
1631
+ "learning_rate": 8.65523748175469e-06,
1632
+ "loss": 0.1559,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.9490835030549898,
1637
+ "grad_norm": 1.1027211644152675,
1638
+ "learning_rate": 8.63898149207895e-06,
1639
+ "loss": 0.1693,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.9531568228105907,
1644
+ "grad_norm": 0.9411765578825619,
1645
+ "learning_rate": 8.622643301638902e-06,
1646
+ "loss": 0.1346,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.9572301425661914,
1651
+ "grad_norm": 0.6884466751221227,
1652
+ "learning_rate": 8.606223279497081e-06,
1653
+ "loss": 0.0968,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.9613034623217923,
1658
+ "grad_norm": 0.7219918781543078,
1659
+ "learning_rate": 8.589721796564521e-06,
1660
+ "loss": 0.0966,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.9653767820773931,
1665
+ "grad_norm": 0.7967809896092082,
1666
+ "learning_rate": 8.57313922559236e-06,
1667
+ "loss": 0.1201,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.9694501018329938,
1672
+ "grad_norm": 0.8113807921190012,
1673
+ "learning_rate": 8.556475941163436e-06,
1674
+ "loss": 0.1097,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.9735234215885947,
1679
+ "grad_norm": 1.0943551126152973,
1680
+ "learning_rate": 8.539732319683817e-06,
1681
+ "loss": 0.1552,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.9775967413441955,
1686
+ "grad_norm": 0.7854046329247982,
1687
+ "learning_rate": 8.5229087393743e-06,
1688
+ "loss": 0.1138,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.9816700610997964,
1693
+ "grad_norm": 1.1720562073286809,
1694
+ "learning_rate": 8.506005580261872e-06,
1695
+ "loss": 0.1525,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.9857433808553971,
1700
+ "grad_norm": 0.718895289386658,
1701
+ "learning_rate": 8.489023224171114e-06,
1702
+ "loss": 0.1082,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.9898167006109979,
1707
+ "grad_norm": 0.613834884154541,
1708
+ "learning_rate": 8.47196205471559e-06,
1709
+ "loss": 0.0877,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.9938900203665988,
1714
+ "grad_norm": 0.9789990123927295,
1715
+ "learning_rate": 8.45482245728917e-06,
1716
+ "loss": 0.1675,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.9979633401221996,
1721
+ "grad_norm": 1.5580291175140415,
1722
+ "learning_rate": 8.437604819057336e-06,
1723
+ "loss": 0.15,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 1.0020366598778003,
1728
+ "grad_norm": 0.7685763736473359,
1729
+ "learning_rate": 8.420309528948422e-06,
1730
+ "loss": 0.1072,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 1.0061099796334012,
1735
+ "grad_norm": 0.6434124354999965,
1736
+ "learning_rate": 8.40293697764484e-06,
1737
+ "loss": 0.0844,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 1.010183299389002,
1742
+ "grad_norm": 0.5841852692369695,
1743
+ "learning_rate": 8.385487557574253e-06,
1744
+ "loss": 0.0859,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 1.0142566191446027,
1749
+ "grad_norm": 0.6061435282600086,
1750
+ "learning_rate": 8.367961662900704e-06,
1751
+ "loss": 0.0809,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 1.0183299389002036,
1756
+ "grad_norm": 0.8866327026089017,
1757
+ "learning_rate": 8.35035968951572e-06,
1758
+ "loss": 0.0996,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 1.0224032586558045,
1763
+ "grad_norm": 0.789311514275454,
1764
+ "learning_rate": 8.33268203502937e-06,
1765
+ "loss": 0.0999,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 1.0264765784114054,
1770
+ "grad_norm": 0.7470915493623619,
1771
+ "learning_rate": 8.314929098761268e-06,
1772
+ "loss": 0.0836,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 1.030549898167006,
1777
+ "grad_norm": 0.7275329446393578,
1778
+ "learning_rate": 8.297101281731576e-06,
1779
+ "loss": 0.0866,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 1.034623217922607,
1784
+ "grad_norm": 0.7227258514093932,
1785
+ "learning_rate": 8.279198986651925e-06,
1786
+ "loss": 0.0901,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 1.0386965376782078,
1791
+ "grad_norm": 0.6146754288814568,
1792
+ "learning_rate": 8.261222617916335e-06,
1793
+ "loss": 0.0789,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 1.0427698574338085,
1798
+ "grad_norm": 0.8514917967475527,
1799
+ "learning_rate": 8.243172581592066e-06,
1800
+ "loss": 0.1017,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 1.0468431771894093,
1805
+ "grad_norm": 0.7579530053794002,
1806
+ "learning_rate": 8.22504928541045e-06,
1807
+ "loss": 0.085,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 1.0509164969450102,
1812
+ "grad_norm": 0.6252945360785674,
1813
+ "learning_rate": 8.206853138757687e-06,
1814
+ "loss": 0.0777,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 1.054989816700611,
1819
+ "grad_norm": 0.7706416070190195,
1820
+ "learning_rate": 8.188584552665592e-06,
1821
+ "loss": 0.0833,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 1.0590631364562118,
1826
+ "grad_norm": 0.7980656602534597,
1827
+ "learning_rate": 8.17024393980231e-06,
1828
+ "loss": 0.0968,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 1.0631364562118126,
1833
+ "grad_norm": 0.6040157250127779,
1834
+ "learning_rate": 8.15183171446299e-06,
1835
+ "loss": 0.0632,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 1.0672097759674135,
1840
+ "grad_norm": 0.6247841753185668,
1841
+ "learning_rate": 8.133348292560442e-06,
1842
+ "loss": 0.073,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 1.0712830957230142,
1847
+ "grad_norm": 0.9705375898534241,
1848
+ "learning_rate": 8.114794091615718e-06,
1849
+ "loss": 0.1158,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 1.075356415478615,
1854
+ "grad_norm": 0.5868673627641846,
1855
+ "learning_rate": 8.096169530748708e-06,
1856
+ "loss": 0.0616,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 1.079429735234216,
1861
+ "grad_norm": 0.6511676677923491,
1862
+ "learning_rate": 8.077475030668647e-06,
1863
+ "loss": 0.0924,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 1.0835030549898166,
1868
+ "grad_norm": 0.8628274720451822,
1869
+ "learning_rate": 8.058711013664633e-06,
1870
+ "loss": 0.0841,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 1.0875763747454175,
1875
+ "grad_norm": 0.6366922861725464,
1876
+ "learning_rate": 8.039877903596069e-06,
1877
+ "loss": 0.0781,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 1.0916496945010183,
1882
+ "grad_norm": 0.6679013936452773,
1883
+ "learning_rate": 8.020976125883105e-06,
1884
+ "loss": 0.074,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 1.0957230142566192,
1889
+ "grad_norm": 0.7115218188251841,
1890
+ "learning_rate": 8.002006107497018e-06,
1891
+ "loss": 0.0909,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 1.0997963340122199,
1896
+ "grad_norm": 0.6044721294592456,
1897
+ "learning_rate": 7.982968276950568e-06,
1898
+ "loss": 0.0682,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 1.1038696537678208,
1903
+ "grad_norm": 1.1198941616515987,
1904
+ "learning_rate": 7.963863064288326e-06,
1905
+ "loss": 0.1067,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 1.1079429735234216,
1910
+ "grad_norm": 0.5209754431453612,
1911
+ "learning_rate": 7.944690901076949e-06,
1912
+ "loss": 0.0743,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 1.1120162932790225,
1917
+ "grad_norm": 0.7595155294604947,
1918
+ "learning_rate": 7.925452220395436e-06,
1919
+ "loss": 0.0903,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 1.1160896130346232,
1924
+ "grad_norm": 0.692986942378061,
1925
+ "learning_rate": 7.906147456825349e-06,
1926
+ "loss": 0.0835,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 1.120162932790224,
1931
+ "grad_norm": 0.6090247595888676,
1932
+ "learning_rate": 7.886777046440993e-06,
1933
+ "loss": 0.0739,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 1.124236252545825,
1938
+ "grad_norm": 1.042879657433014,
1939
+ "learning_rate": 7.867341426799562e-06,
1940
+ "loss": 0.1219,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 1.1283095723014256,
1945
+ "grad_norm": 0.7996350912985092,
1946
+ "learning_rate": 7.847841036931263e-06,
1947
+ "loss": 0.0913,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 1.1323828920570265,
1952
+ "grad_norm": 0.5332223023774978,
1953
+ "learning_rate": 7.828276317329388e-06,
1954
+ "loss": 0.0757,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 1.1364562118126273,
1959
+ "grad_norm": 0.5635521535562537,
1960
+ "learning_rate": 7.80864770994038e-06,
1961
+ "loss": 0.0641,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 1.140529531568228,
1966
+ "grad_norm": 0.6987390220817623,
1967
+ "learning_rate": 7.788955658153829e-06,
1968
+ "loss": 0.0821,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 1.1446028513238289,
1973
+ "grad_norm": 0.6962375028972171,
1974
+ "learning_rate": 7.769200606792476e-06,
1975
+ "loss": 0.0686,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 1.1486761710794298,
1980
+ "grad_norm": 1.3654151723987282,
1981
+ "learning_rate": 7.749383002102147e-06,
1982
+ "loss": 0.0959,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 1.1527494908350306,
1987
+ "grad_norm": 0.8307371553295552,
1988
+ "learning_rate": 7.72950329174169e-06,
1989
+ "loss": 0.0859,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 1.1568228105906313,
1994
+ "grad_norm": 0.9349410963502993,
1995
+ "learning_rate": 7.709561924772855e-06,
1996
+ "loss": 0.0874,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 1.1608961303462322,
2001
+ "grad_norm": 1.1074351510282887,
2002
+ "learning_rate": 7.689559351650142e-06,
2003
+ "loss": 0.1012,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 1.164969450101833,
2008
+ "grad_norm": 0.9416925430977862,
2009
+ "learning_rate": 7.66949602421064e-06,
2010
+ "loss": 0.0923,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 1.1690427698574337,
2015
+ "grad_norm": 0.6905374196650557,
2016
+ "learning_rate": 7.649372395663816e-06,
2017
+ "loss": 0.0676,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 1.1731160896130346,
2022
+ "grad_norm": 0.7723265248527,
2023
+ "learning_rate": 7.629188920581267e-06,
2024
+ "loss": 0.0812,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 1.1771894093686355,
2029
+ "grad_norm": 0.815712697347911,
2030
+ "learning_rate": 7.608946054886468e-06,
2031
+ "loss": 0.0755,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 1.1812627291242364,
2036
+ "grad_norm": 0.8142685931991146,
2037
+ "learning_rate": 7.588644255844464e-06,
2038
+ "loss": 0.097,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 1.185336048879837,
2043
+ "grad_norm": 0.6448741497851783,
2044
+ "learning_rate": 7.568283982051538e-06,
2045
+ "loss": 0.0719,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 1.189409368635438,
2050
+ "grad_norm": 0.5839738850266732,
2051
+ "learning_rate": 7.5478656934248626e-06,
2052
+ "loss": 0.0715,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 1.1934826883910388,
2057
+ "grad_norm": 0.6469439075383099,
2058
+ "learning_rate": 7.527389851192099e-06,
2059
+ "loss": 0.0745,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 1.1975560081466394,
2064
+ "grad_norm": 0.7083801028247904,
2065
+ "learning_rate": 7.506856917880989e-06,
2066
+ "loss": 0.077,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 1.2016293279022403,
2071
+ "grad_norm": 0.5584165288788803,
2072
+ "learning_rate": 7.486267357308896e-06,
2073
+ "loss": 0.0757,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 1.2057026476578412,
2078
+ "grad_norm": 0.7093198997979762,
2079
+ "learning_rate": 7.465621634572336e-06,
2080
+ "loss": 0.0821,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 1.2097759674134418,
2085
+ "grad_norm": 0.8170300802168915,
2086
+ "learning_rate": 7.444920216036473e-06,
2087
+ "loss": 0.0857,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 1.2138492871690427,
2092
+ "grad_norm": 0.6052440895883001,
2093
+ "learning_rate": 7.4241635693245766e-06,
2094
+ "loss": 0.0706,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 1.2179226069246436,
2099
+ "grad_norm": 0.5358799947933865,
2100
+ "learning_rate": 7.40335216330746e-06,
2101
+ "loss": 0.0698,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 1.2219959266802445,
2106
+ "grad_norm": 0.57379599749216,
2107
+ "learning_rate": 7.382486468092899e-06,
2108
+ "loss": 0.0778,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 1.2260692464358451,
2113
+ "grad_norm": 1.9428087979785686,
2114
+ "learning_rate": 7.361566955014999e-06,
2115
+ "loss": 0.0881,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 1.230142566191446,
2120
+ "grad_norm": 0.8052892598402892,
2121
+ "learning_rate": 7.340594096623559e-06,
2122
+ "loss": 0.0807,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 1.234215885947047,
2127
+ "grad_norm": 0.5697887043869344,
2128
+ "learning_rate": 7.319568366673389e-06,
2129
+ "loss": 0.0761,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 1.2382892057026478,
2134
+ "grad_norm": 0.8103909158109461,
2135
+ "learning_rate": 7.2984902401136115e-06,
2136
+ "loss": 0.084,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 1.2423625254582484,
2141
+ "grad_norm": 0.7842393785164873,
2142
+ "learning_rate": 7.277360193076936e-06,
2143
+ "loss": 0.0762,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 1.2464358452138493,
2148
+ "grad_norm": 0.5722519256754022,
2149
+ "learning_rate": 7.256178702868899e-06,
2150
+ "loss": 0.0723,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 1.2505091649694502,
2155
+ "grad_norm": 0.5772908994522038,
2156
+ "learning_rate": 7.234946247957087e-06,
2157
+ "loss": 0.0809,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 1.2545824847250509,
2162
+ "grad_norm": 0.7436038482880873,
2163
+ "learning_rate": 7.213663307960321e-06,
2164
+ "loss": 0.0822,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 1.2586558044806517,
2169
+ "grad_norm": 0.9056276676473372,
2170
+ "learning_rate": 7.192330363637832e-06,
2171
+ "loss": 0.1005,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 1.2627291242362526,
2176
+ "grad_norm": 0.6358405282433213,
2177
+ "learning_rate": 7.170947896878392e-06,
2178
+ "loss": 0.0737,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 1.2668024439918533,
2183
+ "grad_norm": 0.5954677442268389,
2184
+ "learning_rate": 7.149516390689433e-06,
2185
+ "loss": 0.0694,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 1.2708757637474541,
2190
+ "grad_norm": 0.6088987642638558,
2191
+ "learning_rate": 7.12803632918614e-06,
2192
+ "loss": 0.0712,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 1.274949083503055,
2197
+ "grad_norm": 0.6327020826012894,
2198
+ "learning_rate": 7.1065081975805086e-06,
2199
+ "loss": 0.0709,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 1.2790224032586557,
2204
+ "grad_norm": 0.8052023527305602,
2205
+ "learning_rate": 7.084932482170385e-06,
2206
+ "loss": 0.0884,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 1.2830957230142566,
2211
+ "grad_norm": 0.6196057921350728,
2212
+ "learning_rate": 7.063309670328491e-06,
2213
+ "loss": 0.0791,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 1.2871690427698574,
2218
+ "grad_norm": 0.6874689974891509,
2219
+ "learning_rate": 7.041640250491398e-06,
2220
+ "loss": 0.0725,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 1.2912423625254583,
2225
+ "grad_norm": 0.5750839664752618,
2226
+ "learning_rate": 7.019924712148511e-06,
2227
+ "loss": 0.0676,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 1.2953156822810592,
2232
+ "grad_norm": 0.7742197007819996,
2233
+ "learning_rate": 6.998163545830998e-06,
2234
+ "loss": 0.0734,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 1.2993890020366599,
2239
+ "grad_norm": 0.6195282494860945,
2240
+ "learning_rate": 6.976357243100718e-06,
2241
+ "loss": 0.0775,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 1.3034623217922607,
2246
+ "grad_norm": 0.6875577568472137,
2247
+ "learning_rate": 6.954506296539112e-06,
2248
+ "loss": 0.0878,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 1.3075356415478616,
2253
+ "grad_norm": 0.7320126566140536,
2254
+ "learning_rate": 6.9326111997360775e-06,
2255
+ "loss": 0.081,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 1.3116089613034623,
2260
+ "grad_norm": 0.843149661393896,
2261
+ "learning_rate": 6.910672447278827e-06,
2262
+ "loss": 0.0918,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 1.3156822810590632,
2267
+ "grad_norm": 0.6249054893219663,
2268
+ "learning_rate": 6.8886905347406985e-06,
2269
+ "loss": 0.0859,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 1.319755600814664,
2274
+ "grad_norm": 0.6921145932385908,
2275
+ "learning_rate": 6.866665958669976e-06,
2276
+ "loss": 0.0916,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 1.3238289205702647,
2281
+ "grad_norm": 0.5550915898105676,
2282
+ "learning_rate": 6.844599216578667e-06,
2283
+ "loss": 0.0755,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 1.3279022403258656,
2288
+ "grad_norm": 0.8923390816851975,
2289
+ "learning_rate": 6.822490806931262e-06,
2290
+ "loss": 0.0903,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 1.3319755600814664,
2295
+ "grad_norm": 0.6246266762679324,
2296
+ "learning_rate": 6.800341229133486e-06,
2297
+ "loss": 0.0833,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 1.336048879837067,
2302
+ "grad_norm": 0.8145107114030108,
2303
+ "learning_rate": 6.778150983520999e-06,
2304
+ "loss": 0.1131,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 1.340122199592668,
2309
+ "grad_norm": 0.6593824730687659,
2310
+ "learning_rate": 6.755920571348111e-06,
2311
+ "loss": 0.0783,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 1.3441955193482689,
2316
+ "grad_norm": 0.7871250490461288,
2317
+ "learning_rate": 6.73365049477645e-06,
2318
+ "loss": 0.0791,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 1.3482688391038695,
2323
+ "grad_norm": 1.5668561976011524,
2324
+ "learning_rate": 6.711341256863623e-06,
2325
+ "loss": 0.116,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 1.3523421588594704,
2330
+ "grad_norm": 0.6238740583787221,
2331
+ "learning_rate": 6.688993361551847e-06,
2332
+ "loss": 0.079,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 1.3564154786150713,
2337
+ "grad_norm": 0.7619408457347728,
2338
+ "learning_rate": 6.66660731365657e-06,
2339
+ "loss": 0.0876,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 1.3604887983706722,
2344
+ "grad_norm": 0.5260527244857047,
2345
+ "learning_rate": 6.64418361885507e-06,
2346
+ "loss": 0.08,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 1.364562118126273,
2351
+ "grad_norm": 0.7273285421050715,
2352
+ "learning_rate": 6.621722783675024e-06,
2353
+ "loss": 0.0803,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 1.3686354378818737,
2358
+ "grad_norm": 0.5976232642003504,
2359
+ "learning_rate": 6.599225315483076e-06,
2360
+ "loss": 0.0773,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 1.3727087576374746,
2365
+ "grad_norm": 0.5354838304438007,
2366
+ "learning_rate": 6.576691722473368e-06,
2367
+ "loss": 0.0699,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 1.3767820773930755,
2372
+ "grad_norm": 0.7164176676979538,
2373
+ "learning_rate": 6.554122513656065e-06,
2374
+ "loss": 0.0898,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 1.3808553971486761,
2379
+ "grad_norm": 0.694148331721139,
2380
+ "learning_rate": 6.531518198845854e-06,
2381
+ "loss": 0.0796,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 1.384928716904277,
2386
+ "grad_norm": 0.8668103406807447,
2387
+ "learning_rate": 6.508879288650431e-06,
2388
+ "loss": 0.0864,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 1.3890020366598779,
2393
+ "grad_norm": 0.905281439053181,
2394
+ "learning_rate": 6.486206294458966e-06,
2395
+ "loss": 0.1032,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 1.3930753564154785,
2400
+ "grad_norm": 0.6090466800578089,
2401
+ "learning_rate": 6.463499728430549e-06,
2402
+ "loss": 0.0739,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 1.3971486761710794,
2407
+ "grad_norm": 0.870879688990723,
2408
+ "learning_rate": 6.4407601034826225e-06,
2409
+ "loss": 0.0911,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 1.4012219959266803,
2414
+ "grad_norm": 0.5520211139425468,
2415
+ "learning_rate": 6.417987933279397e-06,
2416
+ "loss": 0.0763,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 1.405295315682281,
2421
+ "grad_norm": 0.567715626333358,
2422
+ "learning_rate": 6.395183732220242e-06,
2423
+ "loss": 0.0685,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 1.4093686354378818,
2428
+ "grad_norm": 0.6211209151590639,
2429
+ "learning_rate": 6.372348015428077e-06,
2430
+ "loss": 0.0763,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 1.4134419551934827,
2435
+ "grad_norm": 0.6300074755034071,
2436
+ "learning_rate": 6.349481298737723e-06,
2437
+ "loss": 0.0811,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 1.4175152749490836,
2442
+ "grad_norm": 0.5995929997342367,
2443
+ "learning_rate": 6.32658409868426e-06,
2444
+ "loss": 0.0651,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 1.4215885947046842,
2449
+ "grad_norm": 0.6049082049048853,
2450
+ "learning_rate": 6.303656932491349e-06,
2451
+ "loss": 0.0763,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 1.4256619144602851,
2456
+ "grad_norm": 0.9822040378006914,
2457
+ "learning_rate": 6.280700318059563e-06,
2458
+ "loss": 0.1054,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 1.429735234215886,
2463
+ "grad_norm": 0.8449953491667241,
2464
+ "learning_rate": 6.257714773954674e-06,
2465
+ "loss": 0.102,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 1.4338085539714869,
2470
+ "grad_norm": 0.5999494361508966,
2471
+ "learning_rate": 6.234700819395946e-06,
2472
+ "loss": 0.0813,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 1.4378818737270875,
2477
+ "grad_norm": 0.6512734204457252,
2478
+ "learning_rate": 6.211658974244407e-06,
2479
+ "loss": 0.0829,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 1.4419551934826884,
2484
+ "grad_norm": 0.616189473053879,
2485
+ "learning_rate": 6.1885897589911e-06,
2486
+ "loss": 0.0782,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 1.4460285132382893,
2491
+ "grad_norm": 0.9515071645483372,
2492
+ "learning_rate": 6.1654936947453355e-06,
2493
+ "loss": 0.0975,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 1.45010183299389,
2498
+ "grad_norm": 0.6021477200299695,
2499
+ "learning_rate": 6.142371303222909e-06,
2500
+ "loss": 0.071,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 1.4541751527494908,
2505
+ "grad_norm": 0.678653399667039,
2506
+ "learning_rate": 6.119223106734328e-06,
2507
+ "loss": 0.0812,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 1.4582484725050917,
2512
+ "grad_norm": 0.6291449966527708,
2513
+ "learning_rate": 6.0960496281729995e-06,
2514
+ "loss": 0.0689,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 1.4623217922606924,
2519
+ "grad_norm": 0.5932315331898775,
2520
+ "learning_rate": 6.072851391003432e-06,
2521
+ "loss": 0.075,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 1.4663951120162932,
2526
+ "grad_norm": 0.6492759903008403,
2527
+ "learning_rate": 6.0496289192494e-06,
2528
+ "loss": 0.0851,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 1.4704684317718941,
2533
+ "grad_norm": 0.8227230707733793,
2534
+ "learning_rate": 6.026382737482116e-06,
2535
+ "loss": 0.0939,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 1.4745417515274948,
2540
+ "grad_norm": 0.7553836500415501,
2541
+ "learning_rate": 6.003113370808375e-06,
2542
+ "loss": 0.089,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 1.4786150712830957,
2547
+ "grad_norm": 0.8341775236686235,
2548
+ "learning_rate": 5.979821344858695e-06,
2549
+ "loss": 0.1087,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 1.4826883910386965,
2554
+ "grad_norm": 0.7407455393175063,
2555
+ "learning_rate": 5.956507185775441e-06,
2556
+ "loss": 0.0875,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 1.4867617107942974,
2561
+ "grad_norm": 0.6302976593180085,
2562
+ "learning_rate": 5.933171420200946e-06,
2563
+ "loss": 0.074,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 1.4908350305498983,
2568
+ "grad_norm": 0.6017971359417691,
2569
+ "learning_rate": 5.909814575265609e-06,
2570
+ "loss": 0.0771,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 1.494908350305499,
2575
+ "grad_norm": 0.5327101770243312,
2576
+ "learning_rate": 5.88643717857599e-06,
2577
+ "loss": 0.064,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 1.4989816700610998,
2582
+ "grad_norm": 0.5530940520217251,
2583
+ "learning_rate": 5.863039758202889e-06,
2584
+ "loss": 0.0732,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 1.5030549898167007,
2589
+ "grad_norm": 0.575697348750185,
2590
+ "learning_rate": 5.839622842669423e-06,
2591
+ "loss": 0.0794,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 1.5071283095723014,
2596
+ "grad_norm": 0.7879263375060825,
2597
+ "learning_rate": 5.816186960939084e-06,
2598
+ "loss": 0.0873,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 1.5112016293279023,
2603
+ "grad_norm": 0.6477317557359421,
2604
+ "learning_rate": 5.7927326424037875e-06,
2605
+ "loss": 0.0808,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 1.5152749490835031,
2610
+ "grad_norm": 0.6424367902201409,
2611
+ "learning_rate": 5.7692604168719225e-06,
2612
+ "loss": 0.0743,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 1.5193482688391038,
2617
+ "grad_norm": 0.5205522605427637,
2618
+ "learning_rate": 5.745770814556373e-06,
2619
+ "loss": 0.0737,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 1.5234215885947047,
2624
+ "grad_norm": 0.8437328046734178,
2625
+ "learning_rate": 5.722264366062549e-06,
2626
+ "loss": 0.1075,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 1.5274949083503055,
2631
+ "grad_norm": 0.705710140903758,
2632
+ "learning_rate": 5.698741602376395e-06,
2633
+ "loss": 0.0854,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 1.5315682281059062,
2638
+ "grad_norm": 0.5479078071724787,
2639
+ "learning_rate": 5.675203054852403e-06,
2640
+ "loss": 0.0735,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 1.535641547861507,
2645
+ "grad_norm": 0.628783685599969,
2646
+ "learning_rate": 5.651649255201603e-06,
2647
+ "loss": 0.0893,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 1.539714867617108,
2652
+ "grad_norm": 0.6393301256468628,
2653
+ "learning_rate": 5.628080735479553e-06,
2654
+ "loss": 0.0808,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 1.5437881873727086,
2659
+ "grad_norm": 0.5419627427127232,
2660
+ "learning_rate": 5.604498028074323e-06,
2661
+ "loss": 0.0693,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 1.5478615071283097,
2666
+ "grad_norm": 0.5585947140971957,
2667
+ "learning_rate": 5.580901665694471e-06,
2668
+ "loss": 0.0708,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 1.5519348268839104,
2673
+ "grad_norm": 0.7630225067115134,
2674
+ "learning_rate": 5.557292181357003e-06,
2675
+ "loss": 0.0916,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 1.556008146639511,
2680
+ "grad_norm": 0.7132672152748122,
2681
+ "learning_rate": 5.533670108375334e-06,
2682
+ "loss": 0.075,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 1.5600814663951121,
2687
+ "grad_norm": 0.6317003602484598,
2688
+ "learning_rate": 5.510035980347249e-06,
2689
+ "loss": 0.0629,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 1.5641547861507128,
2694
+ "grad_norm": 1.0965759213987818,
2695
+ "learning_rate": 5.486390331142841e-06,
2696
+ "loss": 0.129,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 1.5682281059063137,
2701
+ "grad_norm": 0.9961574441023341,
2702
+ "learning_rate": 5.462733694892452e-06,
2703
+ "loss": 0.0994,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 1.5723014256619146,
2708
+ "grad_norm": 0.55138988687004,
2709
+ "learning_rate": 5.439066605974615e-06,
2710
+ "loss": 0.0884,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 1.5763747454175152,
2715
+ "grad_norm": 0.642013542309746,
2716
+ "learning_rate": 5.415389599003972e-06,
2717
+ "loss": 0.0758,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 1.580448065173116,
2722
+ "grad_norm": 0.7003801753473788,
2723
+ "learning_rate": 5.391703208819209e-06,
2724
+ "loss": 0.0822,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 1.584521384928717,
2729
+ "grad_norm": 0.641290834723853,
2730
+ "learning_rate": 5.368007970470964e-06,
2731
+ "loss": 0.0794,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 1.5885947046843176,
2736
+ "grad_norm": 0.7220121980133926,
2737
+ "learning_rate": 5.344304419209748e-06,
2738
+ "loss": 0.0908,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 1.5926680244399185,
2743
+ "grad_norm": 0.5338391641253294,
2744
+ "learning_rate": 5.3205930904738544e-06,
2745
+ "loss": 0.065,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 1.5967413441955194,
2750
+ "grad_norm": 0.8220572260271829,
2751
+ "learning_rate": 5.296874519877256e-06,
2752
+ "loss": 0.1063,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 1.60081466395112,
2757
+ "grad_norm": 0.6948752546108359,
2758
+ "learning_rate": 5.273149243197517e-06,
2759
+ "loss": 0.092,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 1.6048879837067211,
2764
+ "grad_norm": 0.5973741327673737,
2765
+ "learning_rate": 5.2494177963636785e-06,
2766
+ "loss": 0.0781,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 1.6089613034623218,
2771
+ "grad_norm": 0.7082285511834933,
2772
+ "learning_rate": 5.225680715444168e-06,
2773
+ "loss": 0.0844,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 1.6130346232179225,
2778
+ "grad_norm": 0.5776337469174156,
2779
+ "learning_rate": 5.201938536634674e-06,
2780
+ "loss": 0.0755,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 1.6171079429735236,
2785
+ "grad_norm": 0.6439617862748772,
2786
+ "learning_rate": 5.178191796246043e-06,
2787
+ "loss": 0.0692,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 1.6211812627291242,
2792
+ "grad_norm": 0.693976310427531,
2793
+ "learning_rate": 5.154441030692162e-06,
2794
+ "loss": 0.0844,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 1.625254582484725,
2799
+ "grad_norm": 0.6310937269228004,
2800
+ "learning_rate": 5.1306867764778445e-06,
2801
+ "loss": 0.0605,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 1.629327902240326,
2806
+ "grad_norm": 0.5557882712930212,
2807
+ "learning_rate": 5.106929570186706e-06,
2808
+ "loss": 0.0616,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 1.6334012219959266,
2813
+ "grad_norm": 0.7105865341669582,
2814
+ "learning_rate": 5.083169948469049e-06,
2815
+ "loss": 0.0888,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 1.6374745417515275,
2820
+ "grad_norm": 0.785914280291214,
2821
+ "learning_rate": 5.059408448029737e-06,
2822
+ "loss": 0.0924,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 1.6415478615071284,
2827
+ "grad_norm": 0.760854086300454,
2828
+ "learning_rate": 5.0356456056160715e-06,
2829
+ "loss": 0.0899,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 1.645621181262729,
2834
+ "grad_norm": 0.5160083716123763,
2835
+ "learning_rate": 5.0118819580056686e-06,
2836
+ "loss": 0.0676,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 1.64969450101833,
2841
+ "grad_norm": 0.5926381494692319,
2842
+ "learning_rate": 4.988118041994332e-06,
2843
+ "loss": 0.0719,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 1.6537678207739308,
2848
+ "grad_norm": 0.5387161542722511,
2849
+ "learning_rate": 4.964354394383929e-06,
2850
+ "loss": 0.0757,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 1.6578411405295315,
2855
+ "grad_norm": 0.5028703565858573,
2856
+ "learning_rate": 4.940591551970264e-06,
2857
+ "loss": 0.066,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 1.6619144602851323,
2862
+ "grad_norm": 0.5736039189545704,
2863
+ "learning_rate": 4.9168300515309515e-06,
2864
+ "loss": 0.0724,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 1.6659877800407332,
2869
+ "grad_norm": 0.984691517709554,
2870
+ "learning_rate": 4.8930704298132965e-06,
2871
+ "loss": 0.1022,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 1.6700610997963339,
2876
+ "grad_norm": 0.5927643518511072,
2877
+ "learning_rate": 4.869313223522159e-06,
2878
+ "loss": 0.0718,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 1.674134419551935,
2883
+ "grad_norm": 0.566899954027869,
2884
+ "learning_rate": 4.845558969307839e-06,
2885
+ "loss": 0.0707,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 1.6782077393075356,
2890
+ "grad_norm": 0.5788045225856518,
2891
+ "learning_rate": 4.821808203753959e-06,
2892
+ "loss": 0.0785,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 1.6822810590631363,
2897
+ "grad_norm": 0.5224303081188956,
2898
+ "learning_rate": 4.798061463365327e-06,
2899
+ "loss": 0.0755,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 1.6863543788187374,
2904
+ "grad_norm": 0.5256289426946346,
2905
+ "learning_rate": 4.774319284555833e-06,
2906
+ "loss": 0.0725,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 1.690427698574338,
2911
+ "grad_norm": 0.5514388613040209,
2912
+ "learning_rate": 4.7505822036363214e-06,
2913
+ "loss": 0.0698,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 1.694501018329939,
2918
+ "grad_norm": 0.7507069842501244,
2919
+ "learning_rate": 4.726850756802486e-06,
2920
+ "loss": 0.0779,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 1.6985743380855398,
2925
+ "grad_norm": 0.5535879129510451,
2926
+ "learning_rate": 4.703125480122747e-06,
2927
+ "loss": 0.0677,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 1.7026476578411405,
2932
+ "grad_norm": 0.7586101007852933,
2933
+ "learning_rate": 4.679406909526147e-06,
2934
+ "loss": 0.0959,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 1.7067209775967414,
2939
+ "grad_norm": 0.5235003242969455,
2940
+ "learning_rate": 4.655695580790254e-06,
2941
+ "loss": 0.0782,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 1.7107942973523422,
2946
+ "grad_norm": 0.8957116693381422,
2947
+ "learning_rate": 4.631992029529037e-06,
2948
+ "loss": 0.104,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 1.7148676171079429,
2953
+ "grad_norm": 0.5397767746056776,
2954
+ "learning_rate": 4.608296791180793e-06,
2955
+ "loss": 0.0794,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 1.7189409368635438,
2960
+ "grad_norm": 0.5510200443982937,
2961
+ "learning_rate": 4.584610400996028e-06,
2962
+ "loss": 0.0727,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 1.7230142566191446,
2967
+ "grad_norm": 0.7218539657297133,
2968
+ "learning_rate": 4.560933394025386e-06,
2969
+ "loss": 0.0812,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 1.7270875763747453,
2974
+ "grad_norm": 0.6450718218339647,
2975
+ "learning_rate": 4.537266305107549e-06,
2976
+ "loss": 0.0857,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 1.7311608961303462,
2981
+ "grad_norm": 0.5240562658243174,
2982
+ "learning_rate": 4.513609668857162e-06,
2983
+ "loss": 0.0658,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 1.735234215885947,
2988
+ "grad_norm": 0.5203639231556227,
2989
+ "learning_rate": 4.489964019652752e-06,
2990
+ "loss": 0.0637,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 1.7393075356415477,
2995
+ "grad_norm": 0.7157158022653508,
2996
+ "learning_rate": 4.4663298916246665e-06,
2997
+ "loss": 0.0878,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 1.7433808553971488,
3002
+ "grad_norm": 0.6919816756435726,
3003
+ "learning_rate": 4.442707818642999e-06,
3004
+ "loss": 0.0801,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 1.7474541751527495,
3009
+ "grad_norm": 0.7381380434766637,
3010
+ "learning_rate": 4.419098334305529e-06,
3011
+ "loss": 0.0831,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 1.7515274949083504,
3016
+ "grad_norm": 0.720540642558599,
3017
+ "learning_rate": 4.395501971925677e-06,
3018
+ "loss": 0.0782,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 1.7556008146639512,
3023
+ "grad_norm": 0.6824501618323201,
3024
+ "learning_rate": 4.371919264520449e-06,
3025
+ "loss": 0.0795,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 1.759674134419552,
3030
+ "grad_norm": 0.7572127655566931,
3031
+ "learning_rate": 4.348350744798399e-06,
3032
+ "loss": 0.0798,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 1.7637474541751528,
3037
+ "grad_norm": 0.5634906535431049,
3038
+ "learning_rate": 4.324796945147598e-06,
3039
+ "loss": 0.0728,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 1.7678207739307537,
3044
+ "grad_norm": 0.7686272783650896,
3045
+ "learning_rate": 4.301258397623606e-06,
3046
+ "loss": 0.0782,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 1.7718940936863543,
3051
+ "grad_norm": 0.712370232236961,
3052
+ "learning_rate": 4.2777356339374526e-06,
3053
+ "loss": 0.0856,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 1.7759674134419552,
3058
+ "grad_norm": 0.9290726298620688,
3059
+ "learning_rate": 4.254229185443628e-06,
3060
+ "loss": 0.0783,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 1.780040733197556,
3065
+ "grad_norm": 0.5716455342190312,
3066
+ "learning_rate": 4.230739583128078e-06,
3067
+ "loss": 0.0701,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 1.7841140529531567,
3072
+ "grad_norm": 1.1820087104502222,
3073
+ "learning_rate": 4.2072673575962125e-06,
3074
+ "loss": 0.0977,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 1.7881873727087576,
3079
+ "grad_norm": 0.935231069436012,
3080
+ "learning_rate": 4.183813039060919e-06,
3081
+ "loss": 0.1103,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 1.7922606924643585,
3086
+ "grad_norm": 0.5110831181130548,
3087
+ "learning_rate": 4.160377157330579e-06,
3088
+ "loss": 0.0787,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 1.7963340122199591,
3093
+ "grad_norm": 0.6036766363233732,
3094
+ "learning_rate": 4.136960241797113e-06,
3095
+ "loss": 0.0648,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 1.8004073319755602,
3100
+ "grad_norm": 0.6253574899226054,
3101
+ "learning_rate": 4.113562821424012e-06,
3102
+ "loss": 0.0856,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 1.804480651731161,
3107
+ "grad_norm": 0.5737047935293089,
3108
+ "learning_rate": 4.090185424734392e-06,
3109
+ "loss": 0.0769,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 1.8085539714867616,
3114
+ "grad_norm": 0.6675899229386297,
3115
+ "learning_rate": 4.066828579799054e-06,
3116
+ "loss": 0.0761,
3117
+ "step": 444
3118
+ },
3119
+ {
3120
+ "epoch": 1.8126272912423627,
3121
+ "grad_norm": 0.5292920337446484,
3122
+ "learning_rate": 4.043492814224559e-06,
3123
+ "loss": 0.0684,
3124
+ "step": 445
3125
+ },
3126
+ {
3127
+ "epoch": 1.8167006109979633,
3128
+ "grad_norm": 0.7551251294419339,
3129
+ "learning_rate": 4.020178655141307e-06,
3130
+ "loss": 0.0792,
3131
+ "step": 446
3132
+ },
3133
+ {
3134
+ "epoch": 1.8207739307535642,
3135
+ "grad_norm": 0.6230513981956748,
3136
+ "learning_rate": 3.9968866291916254e-06,
3137
+ "loss": 0.082,
3138
+ "step": 447
3139
+ },
3140
+ {
3141
+ "epoch": 1.824847250509165,
3142
+ "grad_norm": 0.5934762051634166,
3143
+ "learning_rate": 3.973617262517886e-06,
3144
+ "loss": 0.0638,
3145
+ "step": 448
3146
+ },
3147
+ {
3148
+ "epoch": 1.8289205702647657,
3149
+ "grad_norm": 0.675289075760882,
3150
+ "learning_rate": 3.950371080750602e-06,
3151
+ "loss": 0.0795,
3152
+ "step": 449
3153
+ },
3154
+ {
3155
+ "epoch": 1.8329938900203666,
3156
+ "grad_norm": 0.9147897851217298,
3157
+ "learning_rate": 3.927148608996569e-06,
3158
+ "loss": 0.1063,
3159
+ "step": 450
3160
+ },
3161
+ {
3162
+ "epoch": 1.8370672097759675,
3163
+ "grad_norm": 1.1105124935695379,
3164
+ "learning_rate": 3.903950371827001e-06,
3165
+ "loss": 0.087,
3166
+ "step": 451
3167
+ },
3168
+ {
3169
+ "epoch": 1.8411405295315681,
3170
+ "grad_norm": 0.5889228060416761,
3171
+ "learning_rate": 3.880776893265673e-06,
3172
+ "loss": 0.0767,
3173
+ "step": 452
3174
+ },
3175
+ {
3176
+ "epoch": 1.845213849287169,
3177
+ "grad_norm": 0.5032013275393701,
3178
+ "learning_rate": 3.85762869677709e-06,
3179
+ "loss": 0.0575,
3180
+ "step": 453
3181
+ },
3182
+ {
3183
+ "epoch": 1.84928716904277,
3184
+ "grad_norm": 0.6559816525725005,
3185
+ "learning_rate": 3.834506305254667e-06,
3186
+ "loss": 0.0896,
3187
+ "step": 454
3188
+ },
3189
+ {
3190
+ "epoch": 1.8533604887983706,
3191
+ "grad_norm": 0.7532212211298266,
3192
+ "learning_rate": 3.811410241008902e-06,
3193
+ "loss": 0.0856,
3194
+ "step": 455
3195
+ },
3196
+ {
3197
+ "epoch": 1.8574338085539714,
3198
+ "grad_norm": 0.5738261899311171,
3199
+ "learning_rate": 3.788341025755595e-06,
3200
+ "loss": 0.0733,
3201
+ "step": 456
3202
+ },
3203
+ {
3204
+ "epoch": 1.8615071283095723,
3205
+ "grad_norm": 0.7208121405309541,
3206
+ "learning_rate": 3.765299180604055e-06,
3207
+ "loss": 0.0829,
3208
+ "step": 457
3209
+ },
3210
+ {
3211
+ "epoch": 1.865580448065173,
3212
+ "grad_norm": 0.5296431964709345,
3213
+ "learning_rate": 3.7422852260453274e-06,
3214
+ "loss": 0.0704,
3215
+ "step": 458
3216
+ },
3217
+ {
3218
+ "epoch": 1.869653767820774,
3219
+ "grad_norm": 0.6719188744341698,
3220
+ "learning_rate": 3.719299681940437e-06,
3221
+ "loss": 0.09,
3222
+ "step": 459
3223
+ },
3224
+ {
3225
+ "epoch": 1.8737270875763747,
3226
+ "grad_norm": 0.5867743083933351,
3227
+ "learning_rate": 3.696343067508651e-06,
3228
+ "loss": 0.0816,
3229
+ "step": 460
3230
+ },
3231
+ {
3232
+ "epoch": 1.8778004073319754,
3233
+ "grad_norm": 0.49214441808140924,
3234
+ "learning_rate": 3.673415901315743e-06,
3235
+ "loss": 0.0648,
3236
+ "step": 461
3237
+ },
3238
+ {
3239
+ "epoch": 1.8818737270875765,
3240
+ "grad_norm": 0.5871371037925425,
3241
+ "learning_rate": 3.650518701262278e-06,
3242
+ "loss": 0.0732,
3243
+ "step": 462
3244
+ },
3245
+ {
3246
+ "epoch": 1.8859470468431772,
3247
+ "grad_norm": 0.6415787500205045,
3248
+ "learning_rate": 3.6276519845719237e-06,
3249
+ "loss": 0.0731,
3250
+ "step": 463
3251
+ },
3252
+ {
3253
+ "epoch": 1.890020366598778,
3254
+ "grad_norm": 0.7505406685838056,
3255
+ "learning_rate": 3.6048162677797595e-06,
3256
+ "loss": 0.0847,
3257
+ "step": 464
3258
+ },
3259
+ {
3260
+ "epoch": 1.894093686354379,
3261
+ "grad_norm": 0.5203285332468817,
3262
+ "learning_rate": 3.582012066720605e-06,
3263
+ "loss": 0.0666,
3264
+ "step": 465
3265
+ },
3266
+ {
3267
+ "epoch": 1.8981670061099796,
3268
+ "grad_norm": 0.5664388898818371,
3269
+ "learning_rate": 3.559239896517379e-06,
3270
+ "loss": 0.0814,
3271
+ "step": 466
3272
+ },
3273
+ {
3274
+ "epoch": 1.9022403258655805,
3275
+ "grad_norm": 0.9911644175743987,
3276
+ "learning_rate": 3.536500271569452e-06,
3277
+ "loss": 0.0766,
3278
+ "step": 467
3279
+ },
3280
+ {
3281
+ "epoch": 1.9063136456211813,
3282
+ "grad_norm": 0.5541020704419577,
3283
+ "learning_rate": 3.5137937055410343e-06,
3284
+ "loss": 0.0677,
3285
+ "step": 468
3286
+ },
3287
+ {
3288
+ "epoch": 1.910386965376782,
3289
+ "grad_norm": 0.7733672524931661,
3290
+ "learning_rate": 3.4911207113495703e-06,
3291
+ "loss": 0.0883,
3292
+ "step": 469
3293
+ },
3294
+ {
3295
+ "epoch": 1.9144602851323829,
3296
+ "grad_norm": 0.5994378228763769,
3297
+ "learning_rate": 3.4684818011541484e-06,
3298
+ "loss": 0.0779,
3299
+ "step": 470
3300
+ },
3301
+ {
3302
+ "epoch": 1.9185336048879837,
3303
+ "grad_norm": 0.7925341371043554,
3304
+ "learning_rate": 3.4458774863439366e-06,
3305
+ "loss": 0.0882,
3306
+ "step": 471
3307
+ },
3308
+ {
3309
+ "epoch": 1.9226069246435844,
3310
+ "grad_norm": 0.8007592704584606,
3311
+ "learning_rate": 3.423308277526633e-06,
3312
+ "loss": 0.088,
3313
+ "step": 472
3314
+ },
3315
+ {
3316
+ "epoch": 1.9266802443991853,
3317
+ "grad_norm": 0.6130809497009315,
3318
+ "learning_rate": 3.4007746845169253e-06,
3319
+ "loss": 0.0836,
3320
+ "step": 473
3321
+ },
3322
+ {
3323
+ "epoch": 1.9307535641547862,
3324
+ "grad_norm": 0.6462482272234705,
3325
+ "learning_rate": 3.3782772163249767e-06,
3326
+ "loss": 0.0671,
3327
+ "step": 474
3328
+ },
3329
+ {
3330
+ "epoch": 1.9348268839103868,
3331
+ "grad_norm": 0.4781126271398999,
3332
+ "learning_rate": 3.3558163811449317e-06,
3333
+ "loss": 0.0694,
3334
+ "step": 475
3335
+ },
3336
+ {
3337
+ "epoch": 1.938900203665988,
3338
+ "grad_norm": 0.7328378092623428,
3339
+ "learning_rate": 3.3333926863434317e-06,
3340
+ "loss": 0.0847,
3341
+ "step": 476
3342
+ },
3343
+ {
3344
+ "epoch": 1.9429735234215886,
3345
+ "grad_norm": 0.6002434419865161,
3346
+ "learning_rate": 3.311006638448155e-06,
3347
+ "loss": 0.0724,
3348
+ "step": 477
3349
+ },
3350
+ {
3351
+ "epoch": 1.9470468431771895,
3352
+ "grad_norm": 0.6276269450961816,
3353
+ "learning_rate": 3.288658743136378e-06,
3354
+ "loss": 0.066,
3355
+ "step": 478
3356
+ },
3357
+ {
3358
+ "epoch": 1.9511201629327903,
3359
+ "grad_norm": 0.8586874267355604,
3360
+ "learning_rate": 3.2663495052235505e-06,
3361
+ "loss": 0.1077,
3362
+ "step": 479
3363
+ },
3364
+ {
3365
+ "epoch": 1.955193482688391,
3366
+ "grad_norm": 0.6160197884131686,
3367
+ "learning_rate": 3.2440794286518896e-06,
3368
+ "loss": 0.085,
3369
+ "step": 480
3370
+ },
3371
+ {
3372
+ "epoch": 1.9592668024439919,
3373
+ "grad_norm": 0.5494876667673338,
3374
+ "learning_rate": 3.2218490164790015e-06,
3375
+ "loss": 0.0656,
3376
+ "step": 481
3377
+ },
3378
+ {
3379
+ "epoch": 1.9633401221995928,
3380
+ "grad_norm": 0.5953585828338879,
3381
+ "learning_rate": 3.199658770866515e-06,
3382
+ "loss": 0.0754,
3383
+ "step": 482
3384
+ },
3385
+ {
3386
+ "epoch": 1.9674134419551934,
3387
+ "grad_norm": 0.5401626625339145,
3388
+ "learning_rate": 3.1775091930687374e-06,
3389
+ "loss": 0.0668,
3390
+ "step": 483
3391
+ },
3392
+ {
3393
+ "epoch": 1.9714867617107943,
3394
+ "grad_norm": 0.5111554952361316,
3395
+ "learning_rate": 3.1554007834213357e-06,
3396
+ "loss": 0.0686,
3397
+ "step": 484
3398
+ },
3399
+ {
3400
+ "epoch": 1.9755600814663952,
3401
+ "grad_norm": 0.722625027505199,
3402
+ "learning_rate": 3.1333340413300263e-06,
3403
+ "loss": 0.0848,
3404
+ "step": 485
3405
+ },
3406
+ {
3407
+ "epoch": 1.9796334012219958,
3408
+ "grad_norm": 0.5959140201333295,
3409
+ "learning_rate": 3.1113094652593023e-06,
3410
+ "loss": 0.0701,
3411
+ "step": 486
3412
+ },
3413
+ {
3414
+ "epoch": 1.9837067209775967,
3415
+ "grad_norm": 0.8208975505384392,
3416
+ "learning_rate": 3.0893275527211742e-06,
3417
+ "loss": 0.1013,
3418
+ "step": 487
3419
+ },
3420
+ {
3421
+ "epoch": 1.9877800407331976,
3422
+ "grad_norm": 0.6224896038998268,
3423
+ "learning_rate": 3.067388800263923e-06,
3424
+ "loss": 0.0832,
3425
+ "step": 488
3426
+ },
3427
+ {
3428
+ "epoch": 1.9918533604887982,
3429
+ "grad_norm": 0.6241176624569225,
3430
+ "learning_rate": 3.04549370346089e-06,
3431
+ "loss": 0.0678,
3432
+ "step": 489
3433
+ },
3434
+ {
3435
+ "epoch": 1.9959266802443993,
3436
+ "grad_norm": 0.6061475364205144,
3437
+ "learning_rate": 3.0236427568992845e-06,
3438
+ "loss": 0.0768,
3439
+ "step": 490
3440
+ },
3441
+ {
3442
+ "epoch": 2.0,
3443
+ "grad_norm": 0.7233218000939327,
3444
+ "learning_rate": 3.0018364541690048e-06,
3445
+ "loss": 0.0861,
3446
+ "step": 491
3447
+ },
3448
+ {
3449
+ "epoch": 2.0040733197556007,
3450
+ "grad_norm": 0.4042479382149737,
3451
+ "learning_rate": 2.9800752878514903e-06,
3452
+ "loss": 0.0466,
3453
+ "step": 492
3454
+ },
3455
+ {
3456
+ "epoch": 2.0081466395112018,
3457
+ "grad_norm": 0.5139407106351861,
3458
+ "learning_rate": 2.958359749508603e-06,
3459
+ "loss": 0.0515,
3460
+ "step": 493
3461
+ },
3462
+ {
3463
+ "epoch": 2.0122199592668024,
3464
+ "grad_norm": 0.46115082125552953,
3465
+ "learning_rate": 2.936690329671511e-06,
3466
+ "loss": 0.0435,
3467
+ "step": 494
3468
+ },
3469
+ {
3470
+ "epoch": 2.016293279022403,
3471
+ "grad_norm": 0.4268534345955416,
3472
+ "learning_rate": 2.915067517829615e-06,
3473
+ "loss": 0.0455,
3474
+ "step": 495
3475
+ },
3476
+ {
3477
+ "epoch": 2.020366598778004,
3478
+ "grad_norm": 0.4635470622803733,
3479
+ "learning_rate": 2.893491802419492e-06,
3480
+ "loss": 0.0476,
3481
+ "step": 496
3482
+ },
3483
+ {
3484
+ "epoch": 2.024439918533605,
3485
+ "grad_norm": 0.411133073158324,
3486
+ "learning_rate": 2.871963670813861e-06,
3487
+ "loss": 0.0383,
3488
+ "step": 497
3489
+ },
3490
+ {
3491
+ "epoch": 2.0285132382892055,
3492
+ "grad_norm": 0.5300632118826186,
3493
+ "learning_rate": 2.850483609310567e-06,
3494
+ "loss": 0.0429,
3495
+ "step": 498
3496
+ },
3497
+ {
3498
+ "epoch": 2.0325865580448066,
3499
+ "grad_norm": 0.5473407298179113,
3500
+ "learning_rate": 2.829052103121611e-06,
3501
+ "loss": 0.0461,
3502
+ "step": 499
3503
+ },
3504
+ {
3505
+ "epoch": 2.0366598778004072,
3506
+ "grad_norm": 0.5221255489838956,
3507
+ "learning_rate": 2.807669636362169e-06,
3508
+ "loss": 0.0468,
3509
+ "step": 500
3510
+ }
3511
+ ],
3512
+ "logging_steps": 1,
3513
+ "max_steps": 735,
3514
+ "num_input_tokens_seen": 0,
3515
+ "num_train_epochs": 3,
3516
+ "save_steps": 250,
3517
+ "stateful_callbacks": {
3518
+ "TrainerControl": {
3519
+ "args": {
3520
+ "should_epoch_stop": false,
3521
+ "should_evaluate": false,
3522
+ "should_log": false,
3523
+ "should_save": true,
3524
+ "should_training_stop": false
3525
+ },
3526
+ "attributes": {}
3527
+ }
3528
+ },
3529
+ "total_flos": 32704414679040.0,
3530
+ "train_batch_size": 1,
3531
+ "trial_name": null,
3532
+ "trial_params": null
3533
+ }
checkpoint-500/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-3.1-8B-Instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": [
10
+ 128001,
11
+ 128008,
12
+ 128009
13
+ ],
14
+ "head_dim": 128,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 131072,
20
+ "mlp_bias": false,
21
+ "model_type": "llama",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 8,
25
+ "pretraining_tp": 1,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": {
28
+ "factor": 8.0,
29
+ "high_freq_factor": 4.0,
30
+ "low_freq_factor": 1.0,
31
+ "original_max_position_embeddings": 8192,
32
+ "rope_type": "llama3"
33
+ },
34
+ "rope_theta": 500000.0,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.45.0",
38
+ "use_cache": false,
39
+ "vocab_size": 128256
40
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.45.0"
12
+ }
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be7f57e93335f721a5a65c70913898258420e951fb7006d7bd842b88658dc10d
3
+ size 1168138808
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|eom_id|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|begin_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<|eot_id|>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": "<|eot_id|>"
26
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
tokenizer_config.json ADDED
@@ -0,0 +1,2068 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "additional_special_tokens": [
2053
+ "<|eom_id|>"
2054
+ ],
2055
+ "bos_token": "<|begin_of_text|>",
2056
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2057
+ "clean_up_tokenization_spaces": true,
2058
+ "eos_token": "<|eot_id|>",
2059
+ "model_input_names": [
2060
+ "input_ids",
2061
+ "attention_mask"
2062
+ ],
2063
+ "model_max_length": 131072,
2064
+ "pad_token": "<|eot_id|>",
2065
+ "padding_side": "right",
2066
+ "split_special_tokens": false,
2067
+ "tokenizer_class": "PreTrainedTokenizerFast"
2068
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.9938900203665986,
3
+ "total_flos": 48064094208000.0,
4
+ "train_loss": 0.08951896556025865,
5
+ "train_runtime": 6057.9419,
6
+ "train_samples_per_second": 1.945,
7
+ "train_steps_per_second": 0.121
8
+ }
trainer_log.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:266201b4dbff74ad87f1a11f3b724a4866069747c79f60058f5aae5f6e7c094d
3
+ size 7416