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Abstract

Large language models (LLMs) have made sig-
nificant advancements in code-related tasks, yet
many LLMs treat code as simple sequences, ne-
glecting its structured nature. We introduce
AST-TS, a novel pretraining paradigm that lever-
ages the Abstract Syntax Tree (AST) for en-
hanced code generation, transpilation, and un-
derstanding. Using dynamic programming, our
AST-Aware Segmentation retains code structure,
while our AST-Aware Span Corruption objective
equips the model to reconstruct various code struc-
tures. Unlike other models, AST-T5 avoids com-
plex program analyses or architectural changes,
so it integrates seamlessly with any encoder-
decoder Transformer. Evaluations show that
AST-TS5 consistently outperforms similar-sized
LMs across various code-related tasks includ-
ing HumanEval and MBPP. Structure-awareness
makes AST-T5 particularly powerful in code-to-
code tasks, surpassing CodeT5 by 2 points in ex-
act match score for the Bugs2Fix task and by
3 points in exact match score for Java-C# Tran-
spilation in CodeXGLUE. Our code and model
are publicly available at https://github.com/
gonglinyuan/ast_t5.

1. Introduction

We have witnessed the transformative impact of large lan-
guage models (LLMs) on various aspects of artificial intel-
ligence in recent years (Brown et al., 2020; Ouyang et al.,
2022; Touvron et al., 2023), especially in code generation
and understanding (Feng et al., 2020; Wang et al., 2021;
Roziere et al., 2023). By pretraining on massive code cor-
pora such as the GitHub corpus, LLMs learns rich represen-
tations, thereby becoming powerful tools for various down-
stream applications such as text-to-code generation (Chen
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et al., 2021a; Austin et al., 2021; Iyer et al., 2018), code-
to-code transpilation (Lu et al., 2021; Lachaux et al., 2020;
Tufano et al., 2019), and code understanding (mapping code
to classification labels) (Zhou et al., 2019; Svajlenko et al.,
2014).

Despite these impressive advances, most existing models
interpret code as mere sequences of subword tokens, over-
looking its intrinsic structured nature. Prior research has
shown that leveraging the Abstract Syntax Tree (AST) of
code can significantly improve performance on code-related
tasks (Guo et al., 2021; Tipirneni et al., 2023). Some studies
also use code obfuscation during pretraining to teach models
about abstract code structures (Roziere et al., 2021; Wang
et al., 2021). However, these models often rely on compu-
tationally expensive processes like Control-Flow Analysis
(CFA), obfuscation, or even actual code execution. Such de-
pendency limits their scalability and imposes stringent con-
ditions like code executability. Consequently, these methods
may struggle with real-world code, especially in intricate
languages like C/C++, where comprehensive analysis re-
mains elusive.

In this study, we propose AST-T5, a pretraining paradigm
that leverages the Abstract Syntax Tree (AST) structure
of code. The key contribution in AST-TS5 is a simple yet
effective way to exploit code semantics, without the need
to run expensive program analysis or execution. Using a
lightweight, multi-language parser called Tree-sitter!, our
approach has broad applicability across all syntactically
well-defined programming languages. After we parse code
into ASTs, we use a dynamic programming-based segmen-
tation algorithm for AST-aware code segmentation to main-
tain the structural integrity of the input code. Using our
novel AST-Aware Span Corruption technique, the model is
pretrained to reconstruct various code structures, ranging
from individual tokens to entire function bodies. Together,
our approach offers three key advantages: (1) enriched bidi-
rectional encoding for improved code understanding, (2)
the ability to coherently generate code structures, and (3) a
unified, structure-aware pretraining framework that boosts
performance across a variety of code-related tasks, particu-
larly in code transpilation.

In addition, other than our specialized AST-aware masking
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Figure 1: Comparison of AST-Aware Subtree Corruption and Vanilla T5 using a Python factorial function. Both methods
replace masked spans with sentinel tokens (special tokens added to the vocabulary, shown as [X], [ Y], and [Z] in the figure),
with output sequences containing the original masked tokens. Inputs and targets are shown in byte-pair encoding (BPE); for
instance, “factorial” is encoded into “fact” and “orial”. Unlike Vanilla T5, which masks random spans without considering
code structure, our approach specifically targets spans aligned with AST subtrees, like expressions and statements.

approach, AST-TS introduces no architecture changes or
additional heads, and our pretraining objective remains the
same as Vanilla T5. This compatibility enables seamless
integration of our model as a drop-in replacement for any
TS5 variant.

In our experiments, AST-TS consistently outperforms base-
lines in code generation, transpilation, and understanding
tasks. Through controlled experiments, we empirically
demonstrate that these advancements are attributed to our
AST-aware pretraining techniques. Notably, AST-TS not
only outperforms similar-sized models like CodeT5 and
CodeT5+ across various benchmarks but also remains com-
petitive with, or occasionally even exceeds, the performance
of much larger models using the HumanEval (Chen et al.,
2021a) and the MBPP (Austin et al., 2021) benchmarks.
Furthermore, the inherent AST-awareness of AST-TS5 offers
unique advantages in structure-sensitive tasks, such as code-
to-code transpilation and Clone Detection, highlighting its
effectiveness at capturing the structural nuances of code.

2. Related Work

Language Models for Code. Language models (LMs)
extended their use from NLP to code understanding and
generation. Encoder-only models generally excel in code
understanding when finetuned with classifiers (Feng et al.,
2020), while decoder-only models are optimized for code
generation through their autoregressive nature (Chen et al.,
2021a; Fried et al., 2023; Nijkamp et al., 2023b). However,

these models can falter outside their primary domains of
expertise or require increased resources for comparable out-
comes. Our work focuses on encoder-decoder models, aim-
ing to efficiently balance performance in both understanding
and generation tasks without excessive computational de-
mands.

Efforts Toward Unified Models. Extending NLP mod-
els like BART (Lewis et al., 2019) and T5 (Raffel et al.,
2020), several studies have developed encoder-decoder ar-
chitectures, such as PLBART (Ahmad et al., 2021) and
CodeT5 (Wang et al., 2021), to perform well in diverse
code-related tasks. Although these models show broader
utility, they struggle with generating coherent, executable
code in complex scenarios like HumanEval (Chen et al.,
2021a). CodeT5+ (Wang et al., 2023) seeks to address this
limitation through an intricate multi-task pretraining strat-
egy across five objectives. In contrast, our proposed model,
AST-TS, uses a novel AST-Aware pretraining paradigm to
become a unified model capable of generating fluent code
and maintaining superior performance in code understand-
ing tasks. Moreover, AST-TS5 is more streamlined, because
it only uses a single pretraining objective.

Leveraging Code Structure in Pretraining. Code differs
from natural language in two key aspects: its executability
and strict structural syntax. Previous research leveraged
execution traces for improving model performance (Chen
et al., 2018; 2021b; Shojaee et al., 2023), but this approach
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faces scalability challenges when applied to large, web-
crawled code datasets used in pretraining. Regarding code’s
structured nature, various studies have integrated syntactic
elements into neural network models. Li et al. (2018), Kim
et al. (2021) and Ziigner et al. (2021) add AST-Aware atten-
tion mechanisms in their models, while Alon et al. (2020)
and Rabinovich et al. (2017) focus on modeling AST node
expansion operations rather than traditional code tokens. In
parallel, Guo et al. (2021) and Allamanis et al. (2017) ex-
plore DFG-Aware attention mechanisms and Graph Neural
Networks (GNNs), to interpret code based on its Data Flow
Graph (DFG). StructCoder (Tipirneni et al., 2023) enriches
the code input by appending AST and DFG as additional
features. These methods, however, necessitate parsing or
static analysis for downstream tasks, which is less feasible
for incomplete or incorrect code scenarios like bug fixing.

Our work, AST-T5, aligns with methods that utilize code
structure only in pretraining, like DOBF (Roziere et al.,
2021) and CodeT5 (Wang et al., 2021), which obfuscate
inputs to force the model to grasp abstract structures. Our
approach uniquely diverges by using AST-driven segmenta-
tion and masking in T5 span corruption during pretraining.
This novel approach offers a more refined pretraining signal
compared to structure-agnostic TS, equipping our model
to proficiently encode and generate semantically coherent
code structures.

3. Method

In this section, we present AST-T5, a novel pretraining
framework for code-based language models that harnesses
the power of Abstract Syntax Trees (ASTs). First, AST-TS
parses code into ASTs to enable a deeper understanding
of code structure. Leveraging this structure, we introduce
AST-Aware Segmentation, an algorithm designed to address
Transformer token limits while retaining the semantic coher-
ence of the code. Second, we introduce AST-Aware Span
Corruption, a masking technique that pretrains AST-T5 to
reconstruct code structures ranging from individual tokens
to entire function bodies, enhancing both its flexibility and
structure-awareness.

3.1. Parsing Code Into ASTs

Unlike traditional language models on code that handle code
as simple sequences of subword tokens, AST-TS leverages
the Abstract Syntax Tree (AST) of code to gain semantic
insights. For parsing purposes, we assume the provided
code is syntactically valid—a reasonable assumption for
tasks like code transpilation and understanding. Instead of
the often computationally-intensive or infeasible methods of
Control-Flow Analysis (CFA) or code execution (Guo et al.,
2021; Tipirneni et al., 2023), our method only requires the
code to be parsable. We use Tree-sitter, a multi-language

parser, to construct the ASTs, where each subtree represents
a consecutive span of subword tokens, and every leaf node
represents an individual token.

3.2. AST-Aware Segmentation

In this subsection, we describe our AST-Aware Segmenta-
tion method, which splits lengthy code files into chunks in
a structure-perserving manner.

Segmentation in language model pretraining is a critical
yet often overlooked aspect. Transformer LMs impose token
limits on input sequences, making segmentation essential
for fitting these inputs within the max_len constraint. A
naive approach is Greedy Segmentation, where each chunk,
except the last, contains exactly max_len tokens Figure 2
(Left). This strategy has been widely adopted in previous
works, such as CodeT5 (Wang et al., 2021).

Research in NLP by Liu et al. (2019) underscores that seg-
mentation respecting sentence and document boundaries
outperforms the greedy strategy. Given programming lan-
guage’s inherently structured nature, which is arguably more
complex than natural language, a more sophisticated seg-
mentation approach is even more important. However, this
area remains largely unexplored.

AST-Aware Segmentation is our novel approach designed
to preserve the AST structure of code during segmenta-
tion. Unlike Greedy Segmentation, which can indiscrimi-
nately fragment AST structures, our method strategically
minimizes such disruptions. As illustrated in the example
in Figure 2, Greedy Segmentation leads to nine instances
of AST breaks—between Block 1 and Block 2, it breaks
If, FuncDef, and ClassDef; between Block 2 and Block
3, it breaks Attr, BinaryExpr, While, If, FuncDef, and
ClassDef. In contrast, our AST-Aware approach results in
only three breaks: between Block 1 and Block 2, it breaks
ClassDef, and between Block 2 and Block 3, it breaks
FuncDef and ClassDef.

To identify optimal partition boundaries, we developed the
following dynamic programming (DP)-based algorithm:

1. We construct an array cost, where cost[i] denotes
the number of AST-structure breaks that would occur
if partitioning happened right after token ¢. This array
is populated by traversing the AST and incrementing
cost[l..r - 1] by 1 for each span [/, r] associated
with an AST subtree.

2. We define a 2-D array dp, where dp[k, i] represents the
the minimum total number of AST-structure breaks when
k partitions are made for the first ¢ tokens, ending the last
partition right after the ¢-th token. The state transition
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Figure 2: Comparison between Greedy Segmentation and AST-Aware Segmentation: For a 112-token code example with
max_len set at 48, Greedy Segmentation places the first 48 tokens in Block 1, the next 48 tokens in Block 2, and the
remaining in Block 3, disrupting the structural integrity of the code. In contrast, AST-Aware Segmentation uses a dynamic
programming algorithm to smartly partition the code, aligning with boundaries of member functions or major function
branches, thereby preserving the code’s structure. The accompanying AST, with some levels pruned for clarity, corroborates
that these segmentations indeed coincide with key subtree demarcations.

equation is:

min
i—max_len<j<i

dpk, i] = cost[i] + dplk —1,5] (D)

3. While the naive DP algorithm has a quadratic time com-
plexity O(n?) relative to the code file length n, it can be
optimized to O(n? /max_len) by employing a monotonic
queue for sliding-window minimum calculations. This
allows for efficient computation across most code files.
The pseudocode of the optimized dynamic programming
algorithm is shown in Algorithm 1. See Appendix A.2
for details about complexity calculations.

4. The algorithm outputs the partition associated with
dpLk_min, nJ, where k-min = argminy(dp[k, n]), as
the most optimal partition.

In comparing AST-Aware Segmentation with Greedy
Segmentation—using the example in Figure 2—we find
that the former presents more coherent code segments to the
model during pretraining. Conversely, the latter introduces
noisy partial expressions near partition boundaries. Conse-
quently, AST-Aware Segmentation not only optimizes the
pretraining process but also reduces the mismatch between
pretraining and downstream tasks, which often involve com-
plete function definitions as inputs.

3.3. Pretraining with Span Corruption

AST-TS’s pretraining is based on span corruption, a well-
established method for pretraining transformer encoder-
decoder models (Raffel et al., 2020). In this approach,

Algorithm 1 Dynamic Programming in AST-Aware Seg-
mentation

# n: the length of the code file
# (number of tokens)

1
2

3 # m: the max number of segments;

4 # approximately n / max_len

s for k in range(1l, m + 1):

6 g = Queue() # double ended queue

7 for i in range(1l, n + 1):

8 while (qg.nonempty() and

9 g.left() < i - max_len):

10 # pop indices before i - max_len

11 g.pop_left()

12 while (q.nonempty() and

13 dplk-1, qg.right()] > dp[k-1, i-11):
14 # maintain monotonicity of values

15 g.pop_right()

16 g.push_right(i - 1) # push i - 1

17 best_j = q.left()

18 # guaranteed to have the smallest value

19 prevlk, i] = best_j

20 dplk, i] = cost[i] + dp[k - 1, best_j]

15% of the input tokens are randomly masked and replaced
by unique “sentinel” tokens, distinct within each example.
Each unique sentinel token is associated with a specific ID
and added to the model’s vocabulary.

During pretraining, the encoder processes the corrupted in-
put sequence. The decoder’s objective is to reconstruct the
dropped-out tokens based on the encoder’s output repre-
sentations. Specifically, the target sequence consists of the
masked spans of tokens, demarcated by their corresponding
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Algorithm 2 Subtree Selection in AST-Aware Subtree Cor-
ruption

def mask_subtree(t: ASTNode, m: int):
mask m tokens in subtree t

nnn nnn

1
2
3 ordered_children = []

4 m_remaining = m

5 # distribute m tokens among children of t
6 for child in t.children:

7 # theta: a hyperparameter to control
8

9

# masking granularity
if child.size > theta:
10 # same mask ratio as the current subtree
1 m_child = m * (child.size / t.size)
12 mask_subtree(child, m_child) # recurse
13 m_remaining -= m_child
14 else:
15 ordered_children.append(child)
16 weighted_shuffle(ordered_children)
17 # greedy allocation of remaining mask quota
18 for child in ordered_children:
19 m_child = min(m_remaining, child.size)
20 mask_subtree(child, m_child)
21 m_remaining -= m_child

sentinel tokens. This framework effectively trains the model
to recover the original text from a corrupted input. Figure 1
(Left) illustrates an example of the input-output pair for span
corruption.

3.4. AST-Aware Subtree Corruption

AST-T5 augments the traditional span corruption paradigm
by incorporating AST-awareness. Rather than arbitrarily
masking consecutive token spans, AST-T5 masks code
spans corresponding to AST subtrees, ranging from individ-
ual expressions to entire function bodies.

Subtree Masking. We use a recursive algorithm, outlined
in Algorithm 2, to traverse the AST and select subtrees for
masking. The algorithm aims to fulfill two goals:

1. Introduce sufficient randomness across training epochs
to enhance generalization.

2. Control the masking granularity via a tunable hyperpa-
rameter 0 (named theta in Algorithm 2, Line 9).

The “mask quota” m denotes the number of tokens to be
masked in a subtree rooted at node ¢. The size of a subtree
corresponds to the number of tokens it encompasses, derived
from the cumulative sizes of its children. For larger subtrees
that exceed the size threshold 6, masking is applied recur-
sively (Lines 9-13). Meanwhile, smaller subtrees undergo
a weighted shuffle, and the quota m is then apportioned
among t’s children in a greedy fashion according to the
shuffled order (Lines 17-21). The weights for shuffling are

determined by a heuristic function on the size of each child,
such that masking probabilities are distributed uniformly
across leaf nodes. To create a subtree mask for an AST
rooted at ¢ with a mask ratio r (e.g., 15% or 25%), one can
use mask_subtree(t, |[t| - 7]).

The parameter 6 controls the granularity of masking. For
example, with § = 5, the algorithm has a high probabil-
ity to mask individual tokens and short expressions. As
0 increases to 20, the algorithm is more likely to mask
larger constructs such as statements. When 6 = 100, the
probability increases for masking structures like loops or
entire function bodies. To foster diverse training scenarios,
0 is randomly sampled within a predefined range (e.g., 5 to
100) for each training example. This allows the pretraining
framework to inherently accommodate tasks as varied as
single-token completion to full function body generation
from a given signature.

The subtree masking strategy is the primary distinction be-
tween our AST-Aware Subtree Corruption and the Vanilla
TS5 Span Corruption, as illustrated in Figure 1. While con-
ventional TS5 variants mask random token spans, with an
average span length of 3 (Raffel et al., 2020) and neglecting
code structures, our method targets the masking of AST
subtrees, potentially encompassing up to 100 tokens. This
equips AST-T5 for generation of various code structures
coherently.

Pretraining Objective. Except for the strategy used to se-
lect masked tokens and the segmentation strategy described
in Section 3.2 , our approach adheres to the workflow de-
scribed in Section 3.3. Once subtrees are selected for mask-
ing and replaced with sentinel tokens, the encoder processes
this modified input. Subsequently, the decoder is tasked
with reconstructing the original tokens within the masked
subtrees. A side-by-side comparison between our approach
and the Vanilla Span Corruption in TS is presented in Fig-
ure 1.

4. Experimental Setup

Model Architecture. AST-T5 has an architecture simi-
lar to TS5g,se (Raffel et al., 2020), comprising a 12-layer
encoder and a 12-layer decoder, where each layer has 768
dimensions and 12 attention heads. In total, the model has
277M parameters.

Pretraining. AST-TS is pretrained on a subset of The
Stack Dedup corpus (Kocetkov et al., 2022), a near-
deduplicated version of The Stack—a 3.1TB collection of
permissively licensed source code from GitHub cutoff at
April 2022, spanning 358 programming languages. For our
experiments, AST-T5’s training involves Python, Java, C,
C++, C#, Markdown, and reStructuredText subsets, compris-
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ing a 588GB dataset with 93M code and natural language
files.

Each file is first parsed into its AST using the Tree-Sitter
multi-language parser, and then tokenized with byte-level
Byte-Pair Encoding (BPE) using a byte-level BPE token vo-
cabulary. Following AST-Aware Segmentation, these files
are partitioned into chunks of 1,024 tokens. Our model is
pretrained using the AST-Aware Subtree Corruption objec-
tive for 524 billion tokens (1,024 tokens per sequence, 1,024
sequences per batch, and 500k steps). For each training ex-
ample, we apply AST-Aware Subtree Corruption of it is
code, or apply Vanilla T5 Span Corruption of it is natural
language. For code, the threshold, 6, is uniformly sampled
from 5 to 100. For text, the length of each masked span
is uniformly sampled from 1 to 10. Pretraining uses Py-
Torch, Fairseq2 and FlashAttention (Dao et al., 2022) and is
conducted on 8 nodes, each with 8x NVIDIA A100 40GB
GPUs. Further pretraining hyperparameters are detailed in
Appendix A.3.

Evaluation. We evaluate AST-T5 across three types
of tasks: text-to-code generation, code-to-code transpila-
tion, and code understanding (classification). Our eval-
uation encompasses tasks from the CodeXGLUE meta-
benchmark (Lu et al.,, 2021) and also includes Hu-
manEval (Chen et al., 2021a) and MBPP (Austin et al.,
2021). Specifically, for text-to-code generation, we assess
performance using HumanEval, MBPP, and Concode (Iyer
et al., 2018); for transpilation, we use CodeXGLUE Java-
C# and Bugs2Fix (Tufano et al., 2019) for evaluation; and
for understanding, we use BigCloneBench (Svajlenko et al.,
2014) and the Defect Detection task proposed by Zhou et al.
(2019). Detailed metrics and statistics of these datasets are
provided in Table 1.

We finetune AST-TS on the training datasets of all down-
stream tasks, adhering to the methodology by Raffel et al.
(2020). For the HumanEval task, which lacks its own train-
ing dataset, we use CodeSearchNet (Husain et al., 2020),
aligning with the approach of Wang et al. (2023). The
prompt templates for finetuning are constructed using the
PromptSource framework (Bach et al., 2022). The finetun-
ing takes 50k steps, with the peak learning rate set at 10%
of the pretraining learning rate. All other hyperparameters
from pretraining are retained without further adjustments,
and we train only one finetuned model. During inference,
rank classification is employed for code understanding tasks
and beam search is used for generative tasks, following Sanh
et al. (2021). For CodeXGLUE, we evaluate our model on
the test set using five prompt templates for each task and
report the average performance; for HumanEval and MBPP,
we evaluate the top-1 generated output from beam search.

2https://github.com/facebookresearch/fairseq

Table 1: Overview of our evaluation benchmarks about test
set size, task type, and evaluation metric for each task. “Gen-
eration” tasks involve mapping natural language to code,
“Transpilation” tasks involve translating code from one pro-
gramming language to another, and “Understanding” tasks
involve classifying code into categorical labels. For MBPP,
we follow Nijkamp et al. (2023b) and evaluate our model
on the entire “sanitized” subset without few-shot prompts.
For evaluation metrics, “Pass@1” indicates code execution
on unit-tests provided in the benchmark using a single gen-
erated code per example, with reported pass rates. “EM”
(Exact Match) evaluates textual equivalence without exe-
cution by comparing two canonicalized code pieces. “Acc”
means accuracy in classification tasks. We omit “BLEU
scores” because high BLEU values (> 50) can still corre-
spond to unexecutable or significantly flawed code (Lu et al.,
2021), which is not useful in real-world applications. We
also discuss evaluation results using the CodeBLEU (Ren
et al., 2020) metric in Appendix A.6.

Size Type Metric
HumanEval 164  Generation Pass@1
MBPP 427 Generation Pass@1
Concode 2,000 Generation EM
Bugs2Fix 12,379  Transpilation EM
Java-C# 1,000 Transpilation = EM
BigCloneBench 415,416 Understanding F1
Defect Detect 27,318 Understanding Acc

Baselines. We first benchmark AST-TS5 against our own

TS5 baselines to ensure a controlled comparison. All models
share identical Transformer architectures, pretraining data,
and computational settings, differing only in the use of AST-
Aware Segmentation and Subtree Corruption techniques by
AST-T5. This setup directly evaluates the efficacy of our
proposed methods.

We further benchmark AST-TS against other language mod-
els for code-related tasks. These include decoder-only mod-
els such as the GPT variants (Brown et al., 2020; Chen et al.,
2021a; Wang & Komatsuzaki, 2021; Black et al., 2021),
PalLM (Chowdhery et al., 2022), InCoder (Fried et al., 2023),
and LLaMa (Touvron et al., 2023). We also compare with
encoder-decoder models, including PLBART (Ahmad et al.,
2021), CodeT5 (Wang et al., 2021), StructCoder (Tipirneni
et al., 2023), and CodeT5+ (Wang et al., 2023). Notably,
CodeT5gase and CodeT5+ (220M) closely resemble our
model in terms of architecture and size, but AST-T5 distin-
guishes itself with its AST-Aware pretraining techniques.
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Table 2: Performance comparison of various pretraining configurations for downstream tasks. Each row represents a
sequential modification applied to the model in the previous row. Metrics include “Pass@ 1” rate for HumanEval, “Exact
Match” rate for CONCODE, Bugs2Fix (for “Small” and “Medium” code lengths splits), and Java-C# transpilation (both
Java-to-C# and C#-to-Java). F1 score is used for Clone Detection, and Accuracy for Defect Detection, consistent with prior

studies.

Generation Transpilation Understanding
Pretraining Config HumanEval Concode Bugs2Fix Java-C# Clone Defect Avg
T5 52 18.3  21.2/13.8 65.5/68.4 96.9 64.1 442
+ AST. Segmentation 7.2 202  22.5/15.1 66.3/69.3 98.3 659 45.7
+ AST. Subtree Corrupt 9.6 22.1  23.3/16.5 67.3/72.2 98.6 66.0 47.0
+ Mask 25% (AST-T5) 14.0 229 23.8/16.1 68.9/72.3 98.6 65.8 47.9
+ Mask 50% 14.3 22.0 21.9/15.0 66.5/70.1 97.1 642 464

5. Evaluation Results

In this section, we evaluate AST-TS5 across multiple bench-
marks. First, we analyze the contributions of each compo-
nent within our AST-aware pretraining framework through
controlled experiments. Next, we benchmark AST-T5
against existing models in prior work.

5.1. Pretraining Procedure Analysis

In this subsection, we analyze the key components that
contribute to the pretraining of AST-T5 models. Holding the
model architecture, pretraining datasets, and computational
environment constant, we sequentially add one component
at a time to a TS baseline trained on code, culminating in our
finalized AST-T5 model. Table 2 presents the experimental
results. These results show that:

AST-Aware Segmentation enhances code language mod-
els. A comparison between the first two rows of Table 2
shows that the model trained with AST-Aware Segmentation
consistently outperforms the TS baseline that uses Greedy
Segmentation across all tasks. The advantage stems from
the fact that AST-Aware Segmentation produces less frag-
mented and thus less noisy training inputs during pretraining.
Given that most downstream tasks present coherent code
structures, such as entire function definitions, the consis-
tency upheld by AST-Aware pretraining aligns better with
these structures, leading to improved generalization.

AST-Aware Span Corruption further boosts generation
performance. A comparison between the second and third
rows of Table 2 reveals an improvement when shifting from
Vanilla T5 Span Corruption to our AST-Aware Subtree Cor-
ruption. This performance gain is especially notable in
generation and transpilation tasks. Such enhancements stem
from the ability of AST-Aware Subtree Corruption to guide
the model in generating code with better coherence and

structural integrity.

Increasing masking ratio improves generation perfor-
mance. The typical span corruption mask ratio in TS is
set at 15%. Increasing this ratio could potentially enhance
the model’s generation capabilities, albeit potentially at the
expense of understanding tasks. Essentially, a mask ratio of
100% would emulate a GPT-like, decoder-only Transformer.
However, in our experiments (last two rows of Table 2),
we observed that raising the mask ratio from 15% to 25%
significantly improved generation capabilities without no-
ticeably compromising performance in understanding tasks.
Further analysis shows that increasing the masking ratio to
50% yields only a marginal improvement on HumanEval
(from 14.0 to 14.3), while adversely impacting transpilation
and understanding tasks. Thus, we settled on a 25% mask
ratio for our AST-T5 model.

5.2. Main Results

Table 3 shows AST-T5’s performance on downstream tasks
compared with previously published results of similarly
sized models, specifically those within the “Base” scale
(100M to 300M parameters). Figure 3a and Figure 3b
extends this comparison, comparing AST-T5 with larger
models using the HumanEval benchmark and the MBPP
benchmark, respectively. Additional results on EvalPlus are
shown in Appendix A.4. These results show that:

AST-TS excels as a unified and parameter-efficient LM
for various code-related tasks. While comparable in size,
AST-TS5 consistently outperforms similar-sized models such
as CodeT5 (Wang et al., 2021) and CodeT5+ (Wang et al.,
2023) in code generation, transpilation, and understanding.
Notably, while CodeTS5 and CodeT5+ are models at the Base
scale, they were evaluated across different tasks. Our model,
AST-TS5, outperforms the best results of these two models
across multiple benchmarks at the same time. Moreover,
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Table 3: Results of AST-T5 on downstream tasks compared with reported results of established language models. Evaluation
metrics align with those in Table 1. Our focus is primarily on models with similar sizes as AST-TS, specifically the “Base”
models (100M to 300M parameters), while comparisons against larger models are depicted in Figure 3. Some models are
either encoder-only or decoder-only and are thus not suited for certain tasks. These results are labeled with “N/A” in this
table because they are not available in the literature.

Generation Transpilation Understanding
Model HumanEval Concode Bugs2Fix Java-C# Clone Defect
CodeBERT N/A N/A 16.4/52 59.0/58.8 96.5 62.1
GraphCodeBERT N/A N/A 17.3/9.1 59.4/58.8 97.1 N/A
PLBART N/A 18.8 19.2/9.0 64.6/65.0 97.2 63.2
CodeT5 N/A 223 21.6/14.0 65.9/66.9 97.2 65.8
CodeT5+gase 12.0 N/A N/A N/A 95.2 66.1
StructCoder N/A 22.4 N/A 66.9/68.7 N/A N/A
AST-T5 (Ours) 14.0 229 23.8/16.1 68.9/72.3 98.6 65.8
oCPT-3.5 40 LLaMA-65Be PaLM-5408
40 Codex-12B  LGaMA-33B
Cgler-128 PV 348 ASTTS Ous) hASE e
Cglex-2.5B LLaMA-33B @-LaMA-65B Cogx-258 " ePaLM-62B
220 g% Gtk
& AGTTS Ours)  MCOder g HgMAIB gpalM-628 & CodeGen-Mono-350M LaMIDA-137B
5 [T s .J ....................................... S
2 o LaMA-7B 2 InCoder-1.3B
310 InCoder-1.3B & [}
W ® A~ 10
GJT-Neo CodeGen-Multi-350M
5 ® Proprietary ® Proprietary
P4LM-8B ® Open-Source 5 P; aL.M—SB ® Open-Source
1B 10B 100B 1B 10B 100B
Num of Parameters Num of Parameters
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Figure 3: Visualizations of AST-T5’s performance on HumanEval and MBPP compared to other models compared to models
exceeding 300M parameters. Each point on each scatter plot represents a model. The x-axis shows the parameter count
in log-scale, while the y-axis shows the Pass@1 rate on HumanEval or MBPP in log-scale. Model open-source status is

color-coded: blue for open-source and red for proprietary.

Figure 3a highlights AST-T5’s competitiveness against sig-
nificantly larger models like GPT-J (Wang & Komatsuzaki,
2021) and LLaMa-7B (Touvron et al., 2023) on the Hu-
manEval benchmark, underscoring our model’s parameter
efficiency. Similarly, Figure 3b demonstrates AST-TS’s
advantages over LLaMa-7B and Codex-2.5B (Chen et al.,
2021a) on the MBPP benchmark, showing the effectiveness
of AST-TS.

AST-TS exhibits unique strengths in transpilation
through AST-awareness. Table 3 highlights AST-T5’s
superior performance in code-to-code transpilation tasks,
showcasing gains a substantial gain of 2 to 5 points on
Bugs2Fix and Java-C# transpilation. In transpilation, while
surface-level code can exhibit significant variability, the
intrinsic AST structures of the source and target often main-

tain a notable similarity. The capability of AST-TS to exploit
this structural similarity is crucial to its effectiveness. The
benefits of being structure-aware are further exemplified
by AST-T5’s leading results in Clone Detection, where it
surpasses CodeT5 by 3 points, because AST comparisons
yield more precise insights than direct code comparisons.

6. Conclusion and Future Work

In this work, we present AST-T5, a novel pretraining
paradigm that harnesses the power of Abstract Syntax Trees
(ASTs) to boost the performance of code-centric language
models. Using two structure-aware techniques, AST-T5
not only outperforms models of comparable size but also
competes favorably against some larger counterparts. The
simplicity of AST-TS lies in its singular pretraining ob-
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jective and its adaptability as a drop-in replacement for
any encoder-decoder LM, highlighting its potential for real-
world deployments. Moving forward, we aim to explore the
scalability of AST-T5 by training larger models on more
expansive datasets.
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A. Appendix
A.1. Limitations

AST-TS is specifically designed to enhance code generation performance by exclusively masking code within AST subtrees
during pretraining. While this specialized approach is advantageous for code generation tasks, it may result in suboptimal
performance in natural language generation. Acknowledging this limitation, future versions of AST-T5 could investigate
strategies such as masking docstrings and comments to broaden its applicability. This would potentially improve performance
across various tasks, including code summarization.

A.2. More about AST-Aware Segmentation

In Section 3.2, we use a dynamic programming algorithm to calculate the segmentation that results in the least number of
AST structure breaks. A naive implementation of the DP algorithm is shown in Algorithm 3.

Algorithm 3 Dynamic Programming in AST-Aware Segmentation (Before Optimization)

for k in range(1, m + 1):

for i in range(1, n + 1):
best_j = i - max_len
for j in range(i - max_len + 1, 1i):

if dplk - 1, j1 < dplk - 1, best_jl:
best_j = j

prevlk, i] = best_j
dplk, i] = cost[i] + min_value

[ B T NS S O SCR NN

Denote the length of the code file (in tokens) by n. In the algorithm, m denotes the maximum number of chunks that the file
can be split into, which is approximately n/max_len. So this implementation has time complexity O(mn - max_len) =
O(n?), which is not feasible for longer code files. To optimize this algorithm, we use a monotonic queue to compute the
sliding-window minimum, as described in Algorithm 1.

Each element is only pushed into and popped out of the monotonic queue once, so the time complexity of the optimized
algorithm is O(nm) = O(n?/max_len), making the algorithm ~ 1000x faster when max_len = 1024. This allows the
algorithm to segment each code file with 100k tokens in milliseconds.

A.3. Pretraining Hyperparameters

Table 4 shows the pretraining hyperparameters for our proposed AST-TS model.

A.4. Evaluation Results on EvalPlus

We extend our evaluation to include EvalPlus (Liu et al., 2023), a more rigorous benchmark that enhances the original
HumanEval and MBPP datasets with a substantial number of additional test cases. EvalPlus is designed to provide a more
accurate evaluation of the correctness of programs produced by LLMs.

For our tests on HumanEval+ and MBPP+, we use the same hyperparameters used in our evaluations of HumanEval and
MBPP. It is important to note that the hyperparameter configurations used in our study are not directly comparable to those
used for the models listed on the EvalPlus leaderboard®. Our results are compared against established models including
GPT-Neo, GPT-J, InCoder, and CodeGen-2 (Nijkamp et al., 2023a).

As shown in Table 5, our 277M-parameter AST-T5 outperforms larger models like InCoder-6.7B and CodeGen2-1B,
showing the effectiveness and parameter efficiency of AST-TS.
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Encoder Layers 12
Decoder Layers 12
Hidden Dimension 768
Peak Learning Rate 2e-4
Batch Size 1,024
Warm-Up Steps 10,000
Total Steps 500,000
Sequence Length 1,024
Mask Ratio 25%
Min Subtree Corruption Threshold 6 5
Max Subtree Corruption Threshold 6 100
Relative Position Encoding Buckets 32
Relative Position Encoding Max Distance 128
Adam € le-6
Adam (51, 52) (0.9, 0.98)
Clip Norm 2.0
Dropout 0.1
Weight Decay 0.01

Table 4: Pretraining hyperparameters for our AST-T5 model.

Table 5: Performance of AST-T5 on HumanEval+ and MBPP+ benchmarks, compared with reported numbers of language
models listed on the EvalPlus leaderboard. The evaluation metric used is Pass@1.

#Params HumanEval+ MBPP+

GPT-Neo 2.7B 6.7 79
GPT-] 6B 11.0 12.2
InCoder-1.3B 1.3B 11.0 12.2
InCoder-6.7B 6.7B 12.2 15.9
CodeGen2-1B 1B 9.1 11.0
CodeGen2-3B 3B 12.8 15.9
CodeGen2-7B 7B 17.7 18.3
CodeGen2-16B 16B 16.5 19.5
AST-T5 (Ours) 27TM 12.8 19.3

A.5. Evaluation Results on Multi-Lingual Code Generation

Table 6 presents a comparative analysis of our AST-TS model on Python and Java subsets of the multi-lingual HumanEval
and MBXP benchmarks (Athiwaratkun et al., 2023). This analysis includes models such as BLOOM (BigScience, 2021),
OPT (Zhang et al., 2022), and various configurations of CodeGen (Nijkamp et al., 2023b), as reported in Athiwaratkun et al.
(2023). Our results show AST-TS’s superior performance across all benchmarks compared to the CodeGen-multi-350M.
Furthermore, AST-TS5, having 277M parameters, outperforms larger counterparts like BLOOM-7.1B and OPT-13B.

A.6. Evaluation Results in CodeBLEU

Table 7 presents the performance of various models on the Concode dataset using the CodeBLEU metric, as reported in
(Wang et al., 2021). CodeBLEU, specifically designed for evaluating code synthesis, computes a weighted average of three
scores: textual match (BLEU), AST match, and Data Flow Graph (DFG) match. Our findings show a clear correlation
between CodeBLEU and exact match scores.

3https ://evalplus.github.io/leaderboard.html
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Table 6: Results of AST-TS on multi-lingual HumanEval and MBXP compared with reported results of established language
models. The evaluation metric is Pass@1.

#Params HumanEval MBXP

Python Java Python Java
CodeGen-multi 350M 7.3 5.0 7.5 8.2
CodeGen-mono 350M 10.3 3.1 14.6 1.9
AST-T5 (Ours) 277TM 14.0 10.6 23.9 9.8
BLOOM 7.1B 7.9 8.1 70 7.8
OPT 13B 0.6 0.6 1.4 14
CodeGen-multi 2B 11.0 11.2 18.8 19.5
CodeGen-mono 2B 20.7 5.0 31.7 16.7
CodeGen-multi 6B 152 10.6 225 21.7
CodeGen-mono 6B 19.5 8.7 37.2 19.8
CodeGen-multi 16B 17.1 16.2 242 28.0
CodeGen-mono 16B 22.6 224 40.6 26.8

Table 7: Results of AST-T5 on CONCODE with reported results of established language models. The evaluation metric is
exact match score and CodeBLEU.

EM CodeBLEU

GPT-2 17.4 29.7
CodeGPT-2 18.3 32.7
CodeGPT-adapted  20.1 36.0
PLBART 18.8 38.5
CodeT5-Small 21.6 41.4
CodeT5-Base 22.3 432
AST-T5 (Ours) 22.9 45.0
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