sarielg commited on
Commit
c0a5e8d
·
1 Parent(s): 1ebc0b5

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.96 +/- 13.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4ab2eaca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4ab2ead30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4ab2eadc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4ab2eae50>", "_build": "<function ActorCriticPolicy._build at 0x7fd4ab2eaee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4ab2eaf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4ab270040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4ab2700d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4ab270160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4ab2701f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4ab270280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd4ab2e9420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671915949433984192, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoVzj324CK6nr3XNYSSvbVSTwQ7WQqjtAAAAAAAAIA/jZx5Pp+WwDytNxS8m5k4ulGXUD5dSzq7AACAPwAAgD/m2dq99vR6upFqpjutmGI42Y2wOs1xn7gAAIA/AACAP81pgTxIF5e6XuktO8MWmzZwPwI6fBpJugAAgD8AAIA/TYOCvSk8YrquKhU77P6kNQj0ITtgr5w0AACAPwAAgD/NPgc89vRruohh4joJ6K81cy9cutSPBLoAAIA/AACAP5robr32FEO6M+wvuNcVI7NxaqC6frNPNwAAgD8AAIA/mhcrPPZ4YLp6JAa67TgVNs3NKjtADRo5AACAPwAAgD9mMDQ8SLuJuul/ojtw4Rw4/XCZOhJZ3rYAAIA/AACAP826xzxaDgg/M61NupNKZb5yc0c8khWcPQAAAAAAAAAAZoJrPK6Hj7rD6dk2Wgy/MZMVA7sdmP21AACAPwAAgD/TtSu+JCB0Pyiekb1b3I++pcDCvVKm+jwAAAAAAAAAAGaGszrhqK66qzH6ucPMCrWTdgs6JjgPOQAAgD8AAIA/Mx6ivHWoSD6hKSe9HP9qvkkbkDu6PGy9AAAAAAAAAACN5Js9KI+TPzve+z0ybZq+VhoNPjZnjbwAAAAAAAAAAI37sj3h7Ky6+EFtujMneDWycUC6PiaNOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlzszwfB0YUCUhpRSlIwBbJRN6AOMAXSUR0CSFHw2l2vCdX2UKGgGaAloD0MI16AvvX0OY0CUhpRSlGgVTegDaBZHQJI/+r7wazh1fZQoaAZoCWgPQwjQX+gRo89lQJSGlFKUaBVN6ANoFkdAkkATp1RtQHV9lChoBmgJaA9DCKqAe54/VWBAlIaUUpRoFU3oA2gWR0CSQLtPpIMCdX2UKGgGaAloD0MIWCB6UqaLZkCUhpRSlGgVTegDaBZHQJJB4WBSUC91fZQoaAZoCWgPQwjyQ6URs0hiQJSGlFKUaBVN6ANoFkdAkkJDxLCemXV9lChoBmgJaA9DCFex+E1h5WRAlIaUUpRoFU3oA2gWR0CSQppGnXNDdX2UKGgGaAloD0MIorjjTf6HZECUhpRSlGgVTegDaBZHQJJI4gHNX5p1fZQoaAZoCWgPQwhIpdjRuI1jQJSGlFKUaBVN6ANoFkdAkkm6g/Tsp3V9lChoBmgJaA9DCAOV8e8z0WFAlIaUUpRoFU3oA2gWR0CSTHUGFBY3dX2UKGgGaAloD0MIyXa+nxqNYkCUhpRSlGgVTegDaBZHQJJOkl9jPOZ1fZQoaAZoCWgPQwj+RGXDmixeQJSGlFKUaBVN6ANoFkdAklSE3GXHBHV9lChoBmgJaA9DCEJdpFCWL2NAlIaUUpRoFU3oA2gWR0CSVUJCSidrdX2UKGgGaAloD0MImfG20utTZUCUhpRSlGgVTegDaBZHQJJVWDg62fF1fZQoaAZoCWgPQwh5sTBEzvliQJSGlFKUaBVN6ANoFkdAkmaOyNXHR3V9lChoBmgJaA9DCFIoC19fzGBAlIaUUpRoFU3oA2gWR0CSaZLeANG3dX2UKGgGaAloD0MI1c3F3/bwXkCUhpRSlGgVTegDaBZHQJJucH1OCXh1fZQoaAZoCWgPQwjXaDnQQxBwQJSGlFKUaBVN4wFoFkdAknyfpY9xInV9lChoBmgJaA9DCI8zTdh+ojtAlIaUUpRoFU0KAWgWR0CSfgzMRpUQdX2UKGgGaAloD0MIgLqBAm+zb0CUhpRSlGgVTZABaBZHQJKYfdgv1151fZQoaAZoCWgPQwh8t3njpIJiQJSGlFKUaBVN6ANoFkdAkpjTIV/MGHV9lChoBmgJaA9DCJD0aRV962BAlIaUUpRoFU3oA2gWR0CSmOfpljEvdX2UKGgGaAloD0MIK76h8NnlXkCUhpRSlGgVTegDaBZHQJKZgiml67d1fZQoaAZoCWgPQwiJQzaQLv9iQJSGlFKUaBVN6ANoFkdAkpp0HMUypXV9lChoBmgJaA9DCB6pvvOLj2JAlIaUUpRoFU3oA2gWR0CSmsC3gDRudX2UKGgGaAloD0MI8P0N2qvUYkCUhpRSlGgVTegDaBZHQJKbDFKkEcN1fZQoaAZoCWgPQwicFOY9TulvQJSGlFKUaBVNRANoFkdAkp2Nucc2i3V9lChoBmgJaA9DCOdSXFV2VGBAlIaUUpRoFU3oA2gWR0CSn7WbPQfIdX2UKGgGaAloD0MICB9KtOQuW0CUhpRSlGgVTegDaBZHQJKgUWweNkx1fZQoaAZoCWgPQwgBhuXPtxphQJSGlFKUaBVN6ANoFkdAkqJJQk5ZKXV9lChoBmgJaA9DCEQxeQPMzWVAlIaUUpRoFU3oA2gWR0CSqgPZ7HAAdX2UKGgGaAloD0MIY0LMJVUuYkCUhpRSlGgVTegDaBZHQJKqxnUUfxN1fZQoaAZoCWgPQwjaOGIt/hpxQJSGlFKUaBVNlQFoFkdAkqvOYc/+sHV9lChoBmgJaA9DCMeEmEuqb2JAlIaUUpRoFU3oA2gWR0CSviehwl0HdX2UKGgGaAloD0MIXVK13QQmYkCUhpRSlGgVTegDaBZHQJLL49KVY6p1fZQoaAZoCWgPQwiyLQPOUu1lQJSGlFKUaBVN6ANoFkdAks1YVqN6xHV9lChoBmgJaA9DCAK4WbzY62NAlIaUUpRoFU3oA2gWR0CS53h1Tzd2dX2UKGgGaAloD0MIJ0ut95teZECUhpRSlGgVTegDaBZHQJLn5x7zCk51fZQoaAZoCWgPQwjWj03yI4JkQJSGlFKUaBVN6ANoFkdAkuiIa99MK3V9lChoBmgJaA9DCFzjM9m/F2RAlIaUUpRoFU3oA2gWR0CS6bBlMAWBdX2UKGgGaAloD0MIJPJdSt2icECUhpRSlGgVTeUDaBZHQJLp3el9Brx1fZQoaAZoCWgPQwiOkIE8u9xhQJSGlFKUaBVN6ANoFkdAkupaJQ+EAnV9lChoBmgJaA9DCFs//WfNFGJAlIaUUpRoFU3oA2gWR0CS7XqW1MM7dX2UKGgGaAloD0MIk+LjE7ITYkCUhpRSlGgVTegDaBZHQJLwXPE87p51fZQoaAZoCWgPQwhpc5zbhOhiQJSGlFKUaBVN6ANoFkdAkvEie/YapHV9lChoBmgJaA9DCHqobcOoFGBAlIaUUpRoFU3oA2gWR0CS8+hsZYPodX2UKGgGaAloD0MIXOZ0WcxrZUCUhpRSlGgVTegDaBZHQJL+JYA80UJ1fZQoaAZoCWgPQwj0iqceaatdQJSGlFKUaBVN6ANoFkdAkv85d8iOenV9lChoBmgJaA9DCKkUOxqH0l5AlIaUUpRoFU3oA2gWR0CTAHAEt/WldX2UKGgGaAloD0MI0XZM3RUNbUCUhpRSlGgVTQoCaBZHQJMVfgbZOBV1fZQoaAZoCWgPQwjGTngJTj1kQJSGlFKUaBVN6ANoFkdAkxWV6mfoR3V9lChoBmgJaA9DCKjknNgDMnFAlIaUUpRoFU0SA2gWR0CTHfKW9lErdX2UKGgGaAloD0MINqypLIqjcECUhpRSlGgVTasDaBZHQJMhBmoR7JJ1fZQoaAZoCWgPQwiSO2wis/hjQJSGlFKUaBVN6ANoFkdAkyPGvjfelHV9lChoBmgJaA9DCL7BFybTz2xAlIaUUpRoFU3WAmgWR0CTKOR+BpYcdX2UKGgGaAloD0MIwCZr1EOZZECUhpRSlGgVTegDaBZHQJM+9Cpm29d1fZQoaAZoCWgPQwghV+pZkANsQJSGlFKUaBVN4wNoFkdAkz+nxFy7w3V9lChoBmgJaA9DCPThWYIMM2NAlIaUUpRoFU3oA2gWR0CTQPvs7dSEdX2UKGgGaAloD0MIyhZJu9FiZECUhpRSlGgVTegDaBZHQJNBMLPUrkN1fZQoaAZoCWgPQwjg1XJnpjRmQJSGlFKUaBVN6ANoFkdAk0GyDZlFt3V9lChoBmgJaA9DCKvRqwFKL2FAlIaUUpRoFU3oA2gWR0CTRN9lVcUudX2UKGgGaAloD0MIR7Bx/bviZECUhpRSlGgVTegDaBZHQJNIamQ8wHt1fZQoaAZoCWgPQwibc/BMKA5wQJSGlFKUaBVNTwJoFkdAk032sq8UVXV9lChoBmgJaA9DCBLds65R72FAlIaUUpRoFU3oA2gWR0CTVNAFxGUfdX2UKGgGaAloD0MIAMgJE8ZlYkCUhpRSlGgVTegDaBZHQJNVoLVnVXp1fZQoaAZoCWgPQwjerwJ8N25sQJSGlFKUaBVN2AJoFkdAk1amWY4Qz3V9lChoBmgJaA9DCAeVuI5xU2NAlIaUUpRoFU3oA2gWR0CTVrVVghKUdX2UKGgGaAloD0MIc2n8wuuGcECUhpRSlGgVTZQCaBZHQJNeOgnMMZx1fZQoaAZoCWgPQwjo9pLGaCNrQJSGlFKUaBVN9gFoFkdAk15nuJDVpnV9lChoBmgJaA9DCOvjoe8uDXFAlIaUUpRoFU1rA2gWR0CTaI1He7+UdX2UKGgGaAloD0MIAAAAAABCZECUhpRSlGgVTegDaBZHQJNt7++/QBx1fZQoaAZoCWgPQwhuFi8WRg5wQJSGlFKUaBVN/QJoFkdAk28euaF23nV9lChoBmgJaA9DCKxwy0fSamBAlIaUUpRoFU3oA2gWR0CTePl0o0AMdX2UKGgGaAloD0MIwf7r3LQMYECUhpRSlGgVTegDaBZHQJN8eRMewLV1fZQoaAZoCWgPQwgr+64I/i1gQJSGlFKUaBVN6ANoFkdAk5AwmZ3LWHV9lChoBmgJaA9DCO3vbI+e0HBAlIaUUpRoFU2NAmgWR0CTkXxJul41dX2UKGgGaAloD0MIySHi5lTOYUCUhpRSlGgVTegDaBZHQJORfgccU/R1fZQoaAZoCWgPQwgDQuvhy8FuQJSGlFKUaBVNCQJoFkdAk5LiR0U473V9lChoBmgJaA9DCNCZtKn69nBAlIaUUpRoFU2fAmgWR0CTlADQ7cO9dX2UKGgGaAloD0MIC7PQzmngZUCUhpRSlGgVTegDaBZHQJOVMfV7QcB1fZQoaAZoCWgPQwhUjV4NUP5vQJSGlFKUaBVNSwNoFkdAk5WeMyad+XV9lChoBmgJaA9DCDj3V497F2JAlIaUUpRoFU3oA2gWR0CTmIIqbz9TdX2UKGgGaAloD0MIR1UTRN2XLkCUhpRSlGgVS/toFkdAk5oBe5WilHV9lChoBmgJaA9DCIyEtpyLjHFAlIaUUpRoFU04A2gWR0CTmrEPDpC8dX2UKGgGaAloD0MIKLuZ0Y9ubkCUhpRSlGgVTcIBaBZHQJOcs14xDb91fZQoaAZoCWgPQwgvbw7XamtuQJSGlFKUaBVNVwNoFkdAk6Ms580DU3V9lChoBmgJaA9DCNhHp658imRAlIaUUpRoFU3oA2gWR0CTpCkBCD28dX2UKGgGaAloD0MI7wOQ2gSqcUCUhpRSlGgVTZUBaBZHQJOltMWXTmZ1fZQoaAZoCWgPQwis4o3MY5BwQJSGlFKUaBVNlgJoFkdAk6aFLamGd3V9lChoBmgJaA9DCPq5oSm7Lm5AlIaUUpRoFU3jAWgWR0CTp/VSGahIdX2UKGgGaAloD0MILH5TWGkRckCUhpRSlGgVTT0BaBZHQJOoSpEQXhx1fZQoaAZoCWgPQwg+daxSunxwQJSGlFKUaBVN0AFoFkdAk6rifpUxVXV9lChoBmgJaA9DCCVcyCO4pUFAlIaUUpRoFU0hAWgWR0CTqxHerMkhdX2UKGgGaAloD0MIzcr2IW8RcUCUhpRSlGgVTTECaBZHQJOs/gl4TsZ1fZQoaAZoCWgPQwjL94xE6FdxQJSGlFKUaBVNhAJoFkdAk6+7M9r433V9lChoBmgJaA9DCHb6QV2kq1xAlIaUUpRoFU3oA2gWR0CTsmCEYfnwdX2UKGgGaAloD0MIwJXs2Ah8b0CUhpRSlGgVTfACaBZHQJO3cHSnccl1fZQoaAZoCWgPQwiTxf1HphM8QJSGlFKUaBVNLwFoFkdAk7xSyD7Ik3V9lChoBmgJaA9DCD27fOuDB3FAlIaUUpRoFU1KA2gWR0CTv9LrHEMtdX2UKGgGaAloD0MIb7plh3iDcECUhpRSlGgVTUsCaBZHQJPCOPmxMWZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:018a3ae3c0eccc157c075705d61bbc8e3a932a6d6bbb59b09ea975a9101cfa50
3
+ size 147218
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4ab2eaca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4ab2ead30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4ab2eadc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4ab2eae50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd4ab2eaee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd4ab2eaf70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4ab270040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd4ab2700d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4ab270160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4ab2701f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4ab270280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd4ab2e9420>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671915949433984192,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoVzj324CK6nr3XNYSSvbVSTwQ7WQqjtAAAAAAAAIA/jZx5Pp+WwDytNxS8m5k4ulGXUD5dSzq7AACAPwAAgD/m2dq99vR6upFqpjutmGI42Y2wOs1xn7gAAIA/AACAP81pgTxIF5e6XuktO8MWmzZwPwI6fBpJugAAgD8AAIA/TYOCvSk8YrquKhU77P6kNQj0ITtgr5w0AACAPwAAgD/NPgc89vRruohh4joJ6K81cy9cutSPBLoAAIA/AACAP5robr32FEO6M+wvuNcVI7NxaqC6frNPNwAAgD8AAIA/mhcrPPZ4YLp6JAa67TgVNs3NKjtADRo5AACAPwAAgD9mMDQ8SLuJuul/ojtw4Rw4/XCZOhJZ3rYAAIA/AACAP826xzxaDgg/M61NupNKZb5yc0c8khWcPQAAAAAAAAAAZoJrPK6Hj7rD6dk2Wgy/MZMVA7sdmP21AACAPwAAgD/TtSu+JCB0Pyiekb1b3I++pcDCvVKm+jwAAAAAAAAAAGaGszrhqK66qzH6ucPMCrWTdgs6JjgPOQAAgD8AAIA/Mx6ivHWoSD6hKSe9HP9qvkkbkDu6PGy9AAAAAAAAAACN5Js9KI+TPzve+z0ybZq+VhoNPjZnjbwAAAAAAAAAAI37sj3h7Ky6+EFtujMneDWycUC6PiaNOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlzszwfB0YUCUhpRSlIwBbJRN6AOMAXSUR0CSFHw2l2vCdX2UKGgGaAloD0MI16AvvX0OY0CUhpRSlGgVTegDaBZHQJI/+r7wazh1fZQoaAZoCWgPQwjQX+gRo89lQJSGlFKUaBVN6ANoFkdAkkATp1RtQHV9lChoBmgJaA9DCKqAe54/VWBAlIaUUpRoFU3oA2gWR0CSQLtPpIMCdX2UKGgGaAloD0MIWCB6UqaLZkCUhpRSlGgVTegDaBZHQJJB4WBSUC91fZQoaAZoCWgPQwjyQ6URs0hiQJSGlFKUaBVN6ANoFkdAkkJDxLCemXV9lChoBmgJaA9DCFex+E1h5WRAlIaUUpRoFU3oA2gWR0CSQppGnXNDdX2UKGgGaAloD0MIorjjTf6HZECUhpRSlGgVTegDaBZHQJJI4gHNX5p1fZQoaAZoCWgPQwhIpdjRuI1jQJSGlFKUaBVN6ANoFkdAkkm6g/Tsp3V9lChoBmgJaA9DCAOV8e8z0WFAlIaUUpRoFU3oA2gWR0CSTHUGFBY3dX2UKGgGaAloD0MIyXa+nxqNYkCUhpRSlGgVTegDaBZHQJJOkl9jPOZ1fZQoaAZoCWgPQwj+RGXDmixeQJSGlFKUaBVN6ANoFkdAklSE3GXHBHV9lChoBmgJaA9DCEJdpFCWL2NAlIaUUpRoFU3oA2gWR0CSVUJCSidrdX2UKGgGaAloD0MImfG20utTZUCUhpRSlGgVTegDaBZHQJJVWDg62fF1fZQoaAZoCWgPQwh5sTBEzvliQJSGlFKUaBVN6ANoFkdAkmaOyNXHR3V9lChoBmgJaA9DCFIoC19fzGBAlIaUUpRoFU3oA2gWR0CSaZLeANG3dX2UKGgGaAloD0MI1c3F3/bwXkCUhpRSlGgVTegDaBZHQJJucH1OCXh1fZQoaAZoCWgPQwjXaDnQQxBwQJSGlFKUaBVN4wFoFkdAknyfpY9xInV9lChoBmgJaA9DCI8zTdh+ojtAlIaUUpRoFU0KAWgWR0CSfgzMRpUQdX2UKGgGaAloD0MIgLqBAm+zb0CUhpRSlGgVTZABaBZHQJKYfdgv1151fZQoaAZoCWgPQwh8t3njpIJiQJSGlFKUaBVN6ANoFkdAkpjTIV/MGHV9lChoBmgJaA9DCJD0aRV962BAlIaUUpRoFU3oA2gWR0CSmOfpljEvdX2UKGgGaAloD0MIK76h8NnlXkCUhpRSlGgVTegDaBZHQJKZgiml67d1fZQoaAZoCWgPQwiJQzaQLv9iQJSGlFKUaBVN6ANoFkdAkpp0HMUypXV9lChoBmgJaA9DCB6pvvOLj2JAlIaUUpRoFU3oA2gWR0CSmsC3gDRudX2UKGgGaAloD0MI8P0N2qvUYkCUhpRSlGgVTegDaBZHQJKbDFKkEcN1fZQoaAZoCWgPQwicFOY9TulvQJSGlFKUaBVNRANoFkdAkp2Nucc2i3V9lChoBmgJaA9DCOdSXFV2VGBAlIaUUpRoFU3oA2gWR0CSn7WbPQfIdX2UKGgGaAloD0MICB9KtOQuW0CUhpRSlGgVTegDaBZHQJKgUWweNkx1fZQoaAZoCWgPQwgBhuXPtxphQJSGlFKUaBVN6ANoFkdAkqJJQk5ZKXV9lChoBmgJaA9DCEQxeQPMzWVAlIaUUpRoFU3oA2gWR0CSqgPZ7HAAdX2UKGgGaAloD0MIY0LMJVUuYkCUhpRSlGgVTegDaBZHQJKqxnUUfxN1fZQoaAZoCWgPQwjaOGIt/hpxQJSGlFKUaBVNlQFoFkdAkqvOYc/+sHV9lChoBmgJaA9DCMeEmEuqb2JAlIaUUpRoFU3oA2gWR0CSviehwl0HdX2UKGgGaAloD0MIXVK13QQmYkCUhpRSlGgVTegDaBZHQJLL49KVY6p1fZQoaAZoCWgPQwiyLQPOUu1lQJSGlFKUaBVN6ANoFkdAks1YVqN6xHV9lChoBmgJaA9DCAK4WbzY62NAlIaUUpRoFU3oA2gWR0CS53h1Tzd2dX2UKGgGaAloD0MIJ0ut95teZECUhpRSlGgVTegDaBZHQJLn5x7zCk51fZQoaAZoCWgPQwjWj03yI4JkQJSGlFKUaBVN6ANoFkdAkuiIa99MK3V9lChoBmgJaA9DCFzjM9m/F2RAlIaUUpRoFU3oA2gWR0CS6bBlMAWBdX2UKGgGaAloD0MIJPJdSt2icECUhpRSlGgVTeUDaBZHQJLp3el9Brx1fZQoaAZoCWgPQwiOkIE8u9xhQJSGlFKUaBVN6ANoFkdAkupaJQ+EAnV9lChoBmgJaA9DCFs//WfNFGJAlIaUUpRoFU3oA2gWR0CS7XqW1MM7dX2UKGgGaAloD0MIk+LjE7ITYkCUhpRSlGgVTegDaBZHQJLwXPE87p51fZQoaAZoCWgPQwhpc5zbhOhiQJSGlFKUaBVN6ANoFkdAkvEie/YapHV9lChoBmgJaA9DCHqobcOoFGBAlIaUUpRoFU3oA2gWR0CS8+hsZYPodX2UKGgGaAloD0MIXOZ0WcxrZUCUhpRSlGgVTegDaBZHQJL+JYA80UJ1fZQoaAZoCWgPQwj0iqceaatdQJSGlFKUaBVN6ANoFkdAkv85d8iOenV9lChoBmgJaA9DCKkUOxqH0l5AlIaUUpRoFU3oA2gWR0CTAHAEt/WldX2UKGgGaAloD0MI0XZM3RUNbUCUhpRSlGgVTQoCaBZHQJMVfgbZOBV1fZQoaAZoCWgPQwjGTngJTj1kQJSGlFKUaBVN6ANoFkdAkxWV6mfoR3V9lChoBmgJaA9DCKjknNgDMnFAlIaUUpRoFU0SA2gWR0CTHfKW9lErdX2UKGgGaAloD0MINqypLIqjcECUhpRSlGgVTasDaBZHQJMhBmoR7JJ1fZQoaAZoCWgPQwiSO2wis/hjQJSGlFKUaBVN6ANoFkdAkyPGvjfelHV9lChoBmgJaA9DCL7BFybTz2xAlIaUUpRoFU3WAmgWR0CTKOR+BpYcdX2UKGgGaAloD0MIwCZr1EOZZECUhpRSlGgVTegDaBZHQJM+9Cpm29d1fZQoaAZoCWgPQwghV+pZkANsQJSGlFKUaBVN4wNoFkdAkz+nxFy7w3V9lChoBmgJaA9DCPThWYIMM2NAlIaUUpRoFU3oA2gWR0CTQPvs7dSEdX2UKGgGaAloD0MIyhZJu9FiZECUhpRSlGgVTegDaBZHQJNBMLPUrkN1fZQoaAZoCWgPQwjg1XJnpjRmQJSGlFKUaBVN6ANoFkdAk0GyDZlFt3V9lChoBmgJaA9DCKvRqwFKL2FAlIaUUpRoFU3oA2gWR0CTRN9lVcUudX2UKGgGaAloD0MIR7Bx/bviZECUhpRSlGgVTegDaBZHQJNIamQ8wHt1fZQoaAZoCWgPQwibc/BMKA5wQJSGlFKUaBVNTwJoFkdAk032sq8UVXV9lChoBmgJaA9DCBLds65R72FAlIaUUpRoFU3oA2gWR0CTVNAFxGUfdX2UKGgGaAloD0MIAMgJE8ZlYkCUhpRSlGgVTegDaBZHQJNVoLVnVXp1fZQoaAZoCWgPQwjerwJ8N25sQJSGlFKUaBVN2AJoFkdAk1amWY4Qz3V9lChoBmgJaA9DCAeVuI5xU2NAlIaUUpRoFU3oA2gWR0CTVrVVghKUdX2UKGgGaAloD0MIc2n8wuuGcECUhpRSlGgVTZQCaBZHQJNeOgnMMZx1fZQoaAZoCWgPQwjo9pLGaCNrQJSGlFKUaBVN9gFoFkdAk15nuJDVpnV9lChoBmgJaA9DCOvjoe8uDXFAlIaUUpRoFU1rA2gWR0CTaI1He7+UdX2UKGgGaAloD0MIAAAAAABCZECUhpRSlGgVTegDaBZHQJNt7++/QBx1fZQoaAZoCWgPQwhuFi8WRg5wQJSGlFKUaBVN/QJoFkdAk28euaF23nV9lChoBmgJaA9DCKxwy0fSamBAlIaUUpRoFU3oA2gWR0CTePl0o0AMdX2UKGgGaAloD0MIwf7r3LQMYECUhpRSlGgVTegDaBZHQJN8eRMewLV1fZQoaAZoCWgPQwgr+64I/i1gQJSGlFKUaBVN6ANoFkdAk5AwmZ3LWHV9lChoBmgJaA9DCO3vbI+e0HBAlIaUUpRoFU2NAmgWR0CTkXxJul41dX2UKGgGaAloD0MIySHi5lTOYUCUhpRSlGgVTegDaBZHQJORfgccU/R1fZQoaAZoCWgPQwgDQuvhy8FuQJSGlFKUaBVNCQJoFkdAk5LiR0U473V9lChoBmgJaA9DCNCZtKn69nBAlIaUUpRoFU2fAmgWR0CTlADQ7cO9dX2UKGgGaAloD0MIC7PQzmngZUCUhpRSlGgVTegDaBZHQJOVMfV7QcB1fZQoaAZoCWgPQwhUjV4NUP5vQJSGlFKUaBVNSwNoFkdAk5WeMyad+XV9lChoBmgJaA9DCDj3V497F2JAlIaUUpRoFU3oA2gWR0CTmIIqbz9TdX2UKGgGaAloD0MIR1UTRN2XLkCUhpRSlGgVS/toFkdAk5oBe5WilHV9lChoBmgJaA9DCIyEtpyLjHFAlIaUUpRoFU04A2gWR0CTmrEPDpC8dX2UKGgGaAloD0MIKLuZ0Y9ubkCUhpRSlGgVTcIBaBZHQJOcs14xDb91fZQoaAZoCWgPQwgvbw7XamtuQJSGlFKUaBVNVwNoFkdAk6Ms580DU3V9lChoBmgJaA9DCNhHp658imRAlIaUUpRoFU3oA2gWR0CTpCkBCD28dX2UKGgGaAloD0MI7wOQ2gSqcUCUhpRSlGgVTZUBaBZHQJOltMWXTmZ1fZQoaAZoCWgPQwis4o3MY5BwQJSGlFKUaBVNlgJoFkdAk6aFLamGd3V9lChoBmgJaA9DCPq5oSm7Lm5AlIaUUpRoFU3jAWgWR0CTp/VSGahIdX2UKGgGaAloD0MILH5TWGkRckCUhpRSlGgVTT0BaBZHQJOoSpEQXhx1fZQoaAZoCWgPQwg+daxSunxwQJSGlFKUaBVN0AFoFkdAk6rifpUxVXV9lChoBmgJaA9DCCVcyCO4pUFAlIaUUpRoFU0hAWgWR0CTqxHerMkhdX2UKGgGaAloD0MIzcr2IW8RcUCUhpRSlGgVTTECaBZHQJOs/gl4TsZ1fZQoaAZoCWgPQwjL94xE6FdxQJSGlFKUaBVNhAJoFkdAk6+7M9r433V9lChoBmgJaA9DCHb6QV2kq1xAlIaUUpRoFU3oA2gWR0CTsmCEYfnwdX2UKGgGaAloD0MIwJXs2Ah8b0CUhpRSlGgVTfACaBZHQJO3cHSnccl1fZQoaAZoCWgPQwiTxf1HphM8QJSGlFKUaBVNLwFoFkdAk7xSyD7Ik3V9lChoBmgJaA9DCD27fOuDB3FAlIaUUpRoFU1KA2gWR0CTv9LrHEMtdX2UKGgGaAloD0MIb7plh3iDcECUhpRSlGgVTUsCaBZHQJPCOPmxMWZ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dc127f6d5c9ed3587fa8aa84427614840595cfa30d8a245c48d1134d69b9b57
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27943b89ffc0d280166b877507e37c68583c5fed03645d0378fa09ea933026f2
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (213 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.9617356245812, "std_reward": 13.102861728993703, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-24T21:39:56.407875"}