sarwarbeing commited on
Commit
f59e047
·
1 Parent(s): abaf7d0

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ pipeline_tag: text-classification
8
+ ---
9
+
10
+ # sarwarbeing/biodiversity-impact-few-shot
11
+
12
+ This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
13
+
14
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
15
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
16
+
17
+ ## Usage
18
+
19
+ To use this model for inference, first install the SetFit library:
20
+
21
+ ```bash
22
+ python -m pip install setfit
23
+ ```
24
+
25
+ You can then run inference as follows:
26
+
27
+ ```python
28
+ from setfit import SetFitModel
29
+
30
+ # Download from Hub and run inference
31
+ model = SetFitModel.from_pretrained("sarwarbeing/biodiversity-impact-few-shot")
32
+ # Run inference
33
+ preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
34
+ ```
35
+
36
+ ## BibTeX entry and citation info
37
+
38
+ ```bibtex
39
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
40
+ doi = {10.48550/ARXIV.2209.11055},
41
+ url = {https://arxiv.org/abs/2209.11055},
42
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
43
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
44
+ title = {Efficient Few-Shot Learning Without Prompts},
45
+ publisher = {arXiv},
46
+ year = {2022},
47
+ copyright = {Creative Commons Attribution 4.0 International}
48
+ }
49
+ ```
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
config.json ADDED
@@ -0,0 +1,1035 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deberta-base-finetuned-v7",
3
+ "architectures": [
4
+ "DebertaV2Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifiers_size": [
8
+ 3,
9
+ 2,
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2,
14
+ 1,
15
+ 2,
16
+ 3,
17
+ 2,
18
+ 2,
19
+ 2,
20
+ 3,
21
+ 3,
22
+ 3,
23
+ 3,
24
+ 1,
25
+ 3,
26
+ 3,
27
+ 2,
28
+ 2,
29
+ 3,
30
+ 2,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 6,
36
+ 2,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 3,
42
+ 3,
43
+ 3,
44
+ 3,
45
+ 3,
46
+ 3,
47
+ 3,
48
+ 2,
49
+ 2,
50
+ 2,
51
+ 2,
52
+ 5,
53
+ 3,
54
+ 3,
55
+ 3,
56
+ 3,
57
+ 3,
58
+ 3,
59
+ 3,
60
+ 3,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 3,
65
+ 3,
66
+ 3,
67
+ 3,
68
+ 3,
69
+ 3,
70
+ 3,
71
+ 3,
72
+ 2,
73
+ 2,
74
+ 2,
75
+ 2,
76
+ 47,
77
+ 23,
78
+ 9,
79
+ 1,
80
+ 1,
81
+ 1,
82
+ 1,
83
+ 1,
84
+ 1,
85
+ 1,
86
+ 1,
87
+ 1,
88
+ 1,
89
+ 1,
90
+ 1,
91
+ 1,
92
+ 1,
93
+ 1,
94
+ 1,
95
+ 1,
96
+ 1,
97
+ 1,
98
+ 1,
99
+ 1,
100
+ 1,
101
+ 1,
102
+ 1,
103
+ 1,
104
+ 1,
105
+ 1,
106
+ 1,
107
+ 1,
108
+ 1,
109
+ 1,
110
+ 1,
111
+ 1,
112
+ 1,
113
+ 1,
114
+ 1,
115
+ 1,
116
+ 1,
117
+ 1,
118
+ 1,
119
+ 1,
120
+ 1,
121
+ 1,
122
+ 1,
123
+ 1,
124
+ 1,
125
+ 1,
126
+ 1,
127
+ 1,
128
+ 1,
129
+ 1,
130
+ 1,
131
+ 1,
132
+ 1,
133
+ 1,
134
+ 1,
135
+ 1,
136
+ 1,
137
+ 1,
138
+ 1,
139
+ 1,
140
+ 1,
141
+ 1,
142
+ 1,
143
+ 1,
144
+ 1,
145
+ 1,
146
+ 1,
147
+ 1,
148
+ 1,
149
+ 1,
150
+ 1,
151
+ 1,
152
+ 1,
153
+ 1,
154
+ 1,
155
+ 1,
156
+ 1,
157
+ 1,
158
+ 1,
159
+ 1,
160
+ 1,
161
+ 1,
162
+ 1,
163
+ 1,
164
+ 1,
165
+ 1,
166
+ 1,
167
+ 1,
168
+ 1,
169
+ 1,
170
+ 1,
171
+ 1,
172
+ 1,
173
+ 1,
174
+ 1,
175
+ 1,
176
+ 1,
177
+ 1,
178
+ 1,
179
+ 1,
180
+ 1,
181
+ 1,
182
+ 1,
183
+ 1,
184
+ 1,
185
+ 1,
186
+ 1,
187
+ 1,
188
+ 1,
189
+ 1,
190
+ 1,
191
+ 1,
192
+ 1,
193
+ 1,
194
+ 1,
195
+ 1,
196
+ 1,
197
+ 1,
198
+ 1,
199
+ 1,
200
+ 1,
201
+ 1,
202
+ 1,
203
+ 1,
204
+ 1,
205
+ 1,
206
+ 1,
207
+ 1,
208
+ 2,
209
+ 2,
210
+ 2,
211
+ 2,
212
+ 2,
213
+ 2,
214
+ 20,
215
+ 50,
216
+ 3,
217
+ 3,
218
+ 4,
219
+ 2,
220
+ 8,
221
+ 4,
222
+ 2,
223
+ 2,
224
+ 3,
225
+ 3,
226
+ 3,
227
+ 3,
228
+ 3,
229
+ 3,
230
+ 20,
231
+ 2,
232
+ 174,
233
+ 2,
234
+ 41,
235
+ 2,
236
+ 2,
237
+ 2,
238
+ 2,
239
+ 2,
240
+ 51,
241
+ 3,
242
+ 16,
243
+ 3,
244
+ 2,
245
+ 8,
246
+ 17,
247
+ 18,
248
+ 2,
249
+ 2,
250
+ 2,
251
+ 2,
252
+ 3,
253
+ 11,
254
+ 3,
255
+ 42,
256
+ 3,
257
+ 7,
258
+ 12,
259
+ 7,
260
+ 4,
261
+ 100,
262
+ 13,
263
+ 100,
264
+ 8,
265
+ 1,
266
+ 20,
267
+ 2,
268
+ 2,
269
+ 4,
270
+ 5,
271
+ 3,
272
+ 4,
273
+ 14,
274
+ 2,
275
+ 6,
276
+ 4,
277
+ 2,
278
+ 1,
279
+ 3,
280
+ 10,
281
+ 3,
282
+ 10,
283
+ 4,
284
+ 2,
285
+ 7,
286
+ 6,
287
+ 28,
288
+ 3,
289
+ 6,
290
+ 6,
291
+ 7,
292
+ 3,
293
+ 5,
294
+ 4,
295
+ 2,
296
+ 20,
297
+ 2,
298
+ 2,
299
+ 2,
300
+ 2,
301
+ 2,
302
+ 6,
303
+ 7,
304
+ 2,
305
+ 13,
306
+ 9,
307
+ 2,
308
+ 3,
309
+ 4,
310
+ 2,
311
+ 3,
312
+ 4,
313
+ 2,
314
+ 2,
315
+ 2,
316
+ 2,
317
+ 4,
318
+ 1,
319
+ 2,
320
+ 1,
321
+ 13,
322
+ 3,
323
+ 5,
324
+ 11,
325
+ 37,
326
+ 2,
327
+ 49,
328
+ 12,
329
+ 40,
330
+ 10,
331
+ 4,
332
+ 1,
333
+ 2,
334
+ 2,
335
+ 1,
336
+ 5,
337
+ 2,
338
+ 3,
339
+ 2,
340
+ 2,
341
+ 12,
342
+ 3,
343
+ 3,
344
+ 2,
345
+ 19,
346
+ 3,
347
+ 1,
348
+ 2,
349
+ 2,
350
+ 2,
351
+ 2,
352
+ 2,
353
+ 1,
354
+ 2,
355
+ 2,
356
+ 1,
357
+ 1,
358
+ 2,
359
+ 3,
360
+ 2,
361
+ 1,
362
+ 4,
363
+ 4,
364
+ 1,
365
+ 1,
366
+ 1,
367
+ 2,
368
+ 3,
369
+ 2,
370
+ 3,
371
+ 1,
372
+ 1,
373
+ 2,
374
+ 1,
375
+ 3,
376
+ 2,
377
+ 2,
378
+ 2,
379
+ 2,
380
+ 2,
381
+ 3,
382
+ 2,
383
+ 2,
384
+ 2,
385
+ 1,
386
+ 3,
387
+ 2,
388
+ 2,
389
+ 1,
390
+ 1,
391
+ 1,
392
+ 1,
393
+ 2,
394
+ 1,
395
+ 1,
396
+ 1,
397
+ 1,
398
+ 4,
399
+ 1,
400
+ 1,
401
+ 1,
402
+ 1,
403
+ 3,
404
+ 1,
405
+ 3,
406
+ 1,
407
+ 2,
408
+ 2,
409
+ 1,
410
+ 2,
411
+ 3,
412
+ 3,
413
+ 2,
414
+ 1,
415
+ 3,
416
+ 1,
417
+ 1,
418
+ 3,
419
+ 1,
420
+ 3,
421
+ 2,
422
+ 1,
423
+ 1,
424
+ 1,
425
+ 2,
426
+ 2,
427
+ 50,
428
+ 50,
429
+ 50,
430
+ 50,
431
+ 2,
432
+ 1,
433
+ 1,
434
+ 1,
435
+ 1,
436
+ 1,
437
+ 1,
438
+ 1,
439
+ 1,
440
+ 1,
441
+ 1,
442
+ 1,
443
+ 2,
444
+ 2,
445
+ 2,
446
+ 2,
447
+ 77,
448
+ 2,
449
+ 1,
450
+ 3,
451
+ 2,
452
+ 2,
453
+ 1,
454
+ 1,
455
+ 2,
456
+ 2,
457
+ 2,
458
+ 2,
459
+ 2,
460
+ 2,
461
+ 2,
462
+ 2,
463
+ 2,
464
+ 3,
465
+ 18,
466
+ 13,
467
+ 2,
468
+ 2,
469
+ 2,
470
+ 2,
471
+ 2,
472
+ 2,
473
+ 4,
474
+ 2,
475
+ 24,
476
+ 23,
477
+ 67,
478
+ 279,
479
+ 3,
480
+ 2,
481
+ 2,
482
+ 1,
483
+ 2,
484
+ 2,
485
+ 3,
486
+ 1,
487
+ 2,
488
+ 3,
489
+ 2,
490
+ 3,
491
+ 3,
492
+ 2,
493
+ 2,
494
+ 2,
495
+ 3,
496
+ 3,
497
+ 3,
498
+ 1,
499
+ 1
500
+ ],
501
+ "hidden_act": "gelu",
502
+ "hidden_dropout_prob": 0.1,
503
+ "hidden_size": 768,
504
+ "id2label": {
505
+ "0": "entailment",
506
+ "1": "neutral",
507
+ "2": "contradiction"
508
+ },
509
+ "initializer_range": 0.02,
510
+ "intermediate_size": 3072,
511
+ "label2id": {
512
+ "contradiction": 2,
513
+ "entailment": 0,
514
+ "neutral": 1
515
+ },
516
+ "layer_norm_eps": 1e-07,
517
+ "max_length": 512,
518
+ "max_position_embeddings": 512,
519
+ "max_relative_positions": -1,
520
+ "model_type": "deberta-v2",
521
+ "norm_rel_ebd": "layer_norm",
522
+ "num_attention_heads": 12,
523
+ "num_hidden_layers": 12,
524
+ "pad_token_id": 0,
525
+ "pooler_dropout": 0,
526
+ "pooler_hidden_act": "gelu",
527
+ "pooler_hidden_size": 768,
528
+ "pos_att_type": [
529
+ "p2c",
530
+ "c2p"
531
+ ],
532
+ "position_biased_input": false,
533
+ "position_buckets": 256,
534
+ "problem_type": "single_label_classification",
535
+ "relative_attention": true,
536
+ "share_att_key": true,
537
+ "tasks": [
538
+ "glue/mnli",
539
+ "glue/qnli",
540
+ "glue/rte",
541
+ "glue/wnli",
542
+ "glue/mrpc",
543
+ "glue/qqp",
544
+ "glue/stsb",
545
+ "super_glue/boolq",
546
+ "super_glue/cb",
547
+ "super_glue/multirc",
548
+ "super_glue/wic",
549
+ "super_glue/axg",
550
+ "anli/a1",
551
+ "anli/a2",
552
+ "anli/a3",
553
+ "sick/label",
554
+ "sick/relatedness",
555
+ "sick/entailment_AB",
556
+ "snli",
557
+ "scitail/snli_format",
558
+ "hans",
559
+ "WANLI",
560
+ "recast/recast_ner",
561
+ "recast/recast_sentiment",
562
+ "recast/recast_megaveridicality",
563
+ "recast/recast_verbnet",
564
+ "recast/recast_puns",
565
+ "recast/recast_kg_relations",
566
+ "recast/recast_verbcorner",
567
+ "recast/recast_factuality",
568
+ "probability_words_nli/usnli",
569
+ "probability_words_nli/reasoning_2hop",
570
+ "probability_words_nli/reasoning_1hop",
571
+ "nan-nli/joey234--nan-nli",
572
+ "nli_fever",
573
+ "breaking_nli",
574
+ "conj_nli",
575
+ "fracas",
576
+ "dialogue_nli",
577
+ "mpe",
578
+ "dnc",
579
+ "recast_white/fnplus",
580
+ "recast_white/sprl",
581
+ "recast_white/dpr",
582
+ "joci",
583
+ "robust_nli/IS_CS",
584
+ "robust_nli/LI_LI",
585
+ "robust_nli/ST_WO",
586
+ "robust_nli/PI_SP",
587
+ "robust_nli/PI_CD",
588
+ "robust_nli/ST_SE",
589
+ "robust_nli/ST_NE",
590
+ "robust_nli/ST_LM",
591
+ "robust_nli_is_sd",
592
+ "robust_nli_li_ts",
593
+ "add_one_rte",
594
+ "imppres/implicature_gradable_verb/log",
595
+ "imppres/implicature_quantifiers/log",
596
+ "imppres/implicature_connectives/log",
597
+ "imppres/implicature_numerals_2_3/log",
598
+ "imppres/implicature_numerals_10_100/log",
599
+ "imppres/implicature_gradable_adjective/log",
600
+ "imppres/implicature_modals/log",
601
+ "glue_diagnostics/diagnostics",
602
+ "hlgd",
603
+ "paws/labeled_final",
604
+ "paws/labeled_swap",
605
+ "medical_questions_pairs",
606
+ "conll2003/pos_tags",
607
+ "conll2003/chunk_tags",
608
+ "conll2003/ner_tags",
609
+ "hh-rlhf",
610
+ "model-written-evals",
611
+ "truthful_qa/multiple_choice",
612
+ "fig-qa",
613
+ "bigbench/navigate",
614
+ "bigbench/logical_args",
615
+ "bigbench/implicatures",
616
+ "bigbench/nonsense_words_grammar",
617
+ "bigbench/tracking_shuffled_objects",
618
+ "bigbench/simple_ethical_questions",
619
+ "bigbench/metaphor_understanding",
620
+ "bigbench/novel_concepts",
621
+ "bigbench/emoji_movie",
622
+ "bigbench/social_iqa",
623
+ "bigbench/social_support",
624
+ "bigbench/crash_blossom",
625
+ "bigbench/empirical_judgments",
626
+ "bigbench/english_proverbs",
627
+ "bigbench/mnist_ascii",
628
+ "bigbench/emojis_emotion_prediction",
629
+ "bigbench/hhh_alignment",
630
+ "bigbench/hyperbaton",
631
+ "bigbench/intent_recognition",
632
+ "bigbench/odd_one_out",
633
+ "bigbench/analytic_entailment",
634
+ "bigbench/mathematical_induction",
635
+ "bigbench/cifar10_classification",
636
+ "bigbench/logical_fallacy_detection",
637
+ "bigbench/logical_deduction",
638
+ "bigbench/question_selection",
639
+ "bigbench/formal_fallacies_syllogisms_negation",
640
+ "bigbench/identify_odd_metaphor",
641
+ "bigbench/logic_grid_puzzle",
642
+ "bigbench/reasoning_about_colored_objects",
643
+ "bigbench/riddle_sense",
644
+ "bigbench/bbq_lite_json",
645
+ "bigbench/similarities_abstraction",
646
+ "bigbench/logical_sequence",
647
+ "bigbench/undo_permutation",
648
+ "bigbench/misconceptions",
649
+ "bigbench/movie_recommendation",
650
+ "bigbench/anachronisms",
651
+ "bigbench/symbol_interpretation",
652
+ "bigbench/snarks",
653
+ "bigbench/key_value_maps",
654
+ "bigbench/goal_step_wikihow",
655
+ "bigbench/vitaminc_fact_verification",
656
+ "bigbench/known_unknowns",
657
+ "bigbench/cs_algorithms",
658
+ "bigbench/arithmetic",
659
+ "bigbench/epistemic_reasoning",
660
+ "bigbench/color",
661
+ "bigbench/phrase_relatedness",
662
+ "bigbench/gre_reading_comprehension",
663
+ "bigbench/date_understanding",
664
+ "bigbench/metaphor_boolean",
665
+ "bigbench/strategyqa",
666
+ "bigbench/understanding_fables",
667
+ "bigbench/causal_judgment",
668
+ "bigbench/play_dialog_same_or_different",
669
+ "bigbench/conceptual_combinations",
670
+ "bigbench/sports_understanding",
671
+ "bigbench/dyck_languages",
672
+ "bigbench/salient_translation_error_detection",
673
+ "bigbench/sentence_ambiguity",
674
+ "bigbench/entailed_polarity",
675
+ "bigbench/timedial",
676
+ "bigbench/ruin_names",
677
+ "bigbench/physical_intuition",
678
+ "bigbench/winowhy",
679
+ "bigbench/evaluating_information_essentiality",
680
+ "bigbench/dark_humor_detection",
681
+ "bigbench/moral_permissibility",
682
+ "bigbench/code_line_description",
683
+ "bigbench/temporal_sequences",
684
+ "bigbench/figure_of_speech_detection",
685
+ "bigbench/fantasy_reasoning",
686
+ "bigbench/fact_checker",
687
+ "bigbench/geometric_shapes",
688
+ "bigbench/international_phonetic_alphabet_nli",
689
+ "bigbench/authorship_verification",
690
+ "bigbench/human_organs_senses",
691
+ "bigbench/irony_identification",
692
+ "bigbench/presuppositions_as_nli",
693
+ "bigbench/physics",
694
+ "bigbench/general_knowledge",
695
+ "bigbench/identify_math_theorems",
696
+ "bigbench/penguins_in_a_table",
697
+ "bigbench/hindu_knowledge",
698
+ "bigbench/checkmate_in_one",
699
+ "bigbench/unit_interpretation",
700
+ "bigbench/real_or_fake_text",
701
+ "bigbench/suicide_risk",
702
+ "bigbench/implicit_relations",
703
+ "bigbench/abstract_narrative_understanding",
704
+ "bigbench/strange_stories",
705
+ "bigbench/cause_and_effect",
706
+ "bigbench/disambiguation_qa",
707
+ "bigbench/movie_dialog_same_or_different",
708
+ "bigbench/elementary_math_qa",
709
+ "bigbench/contextual_parametric_knowledge_conflicts",
710
+ "bigbench/crass_ai",
711
+ "bigbench/analogical_similarity",
712
+ "bigbench/discourse_marker_prediction",
713
+ "cos_e/v1.0",
714
+ "cosmos_qa",
715
+ "dream",
716
+ "openbookqa",
717
+ "qasc",
718
+ "quartz",
719
+ "quail",
720
+ "head_qa/en",
721
+ "sciq",
722
+ "social_i_qa",
723
+ "wiki_hop/original",
724
+ "wiqa",
725
+ "piqa",
726
+ "hellaswag",
727
+ "super_glue/copa",
728
+ "balanced-copa",
729
+ "e-CARE",
730
+ "art",
731
+ "winogrande/winogrande_xl",
732
+ "codah/codah",
733
+ "ai2_arc/ARC-Challenge/challenge",
734
+ "ai2_arc/ARC-Easy/challenge",
735
+ "definite_pronoun_resolution",
736
+ "swag/regular",
737
+ "math_qa",
738
+ "glue/cola",
739
+ "glue/sst2",
740
+ "utilitarianism",
741
+ "amazon_counterfactual/en",
742
+ "insincere-questions",
743
+ "toxic_conversations",
744
+ "TuringBench",
745
+ "trec",
746
+ "vitaminc/tals--vitaminc",
747
+ "hope_edi/english",
748
+ "rumoureval_2019/RumourEval2019",
749
+ "ethos/binary",
750
+ "ethos/multilabel",
751
+ "tweet_eval/emotion",
752
+ "tweet_eval/irony",
753
+ "tweet_eval/offensive",
754
+ "tweet_eval/sentiment",
755
+ "tweet_eval/stance_abortion",
756
+ "tweet_eval/stance_atheism",
757
+ "tweet_eval/stance_climate",
758
+ "tweet_eval/stance_feminist",
759
+ "tweet_eval/stance_hillary",
760
+ "tweet_eval/emoji",
761
+ "tweet_eval/hate",
762
+ "discovery/discovery",
763
+ "pragmeval/emobank-valence",
764
+ "pragmeval/switchboard",
765
+ "pragmeval/emobank-dominance",
766
+ "pragmeval/emobank-arousal",
767
+ "pragmeval/squinky-formality",
768
+ "pragmeval/squinky-implicature",
769
+ "pragmeval/squinky-informativeness",
770
+ "pragmeval/mrda",
771
+ "pragmeval/verifiability",
772
+ "pragmeval/pdtb",
773
+ "pragmeval/persuasiveness-claimtype",
774
+ "pragmeval/persuasiveness-eloquence",
775
+ "pragmeval/persuasiveness-premisetype",
776
+ "pragmeval/gum",
777
+ "pragmeval/stac",
778
+ "pragmeval/persuasiveness-specificity",
779
+ "pragmeval/persuasiveness-strength",
780
+ "pragmeval/sarcasm",
781
+ "pragmeval/persuasiveness-relevance",
782
+ "pragmeval/emergent",
783
+ "silicone/iemocap",
784
+ "silicone/sem",
785
+ "silicone/oasis",
786
+ "silicone/meld_s",
787
+ "silicone/meld_e",
788
+ "silicone/maptask",
789
+ "silicone/dyda_e",
790
+ "silicone/dyda_da",
791
+ "lex_glue/eurlex",
792
+ "lex_glue/scotus",
793
+ "lex_glue/ledgar",
794
+ "lex_glue/unfair_tos",
795
+ "lex_glue/case_hold",
796
+ "language-identification",
797
+ "imdb",
798
+ "rotten_tomatoes",
799
+ "ag_news",
800
+ "yelp_review_full/yelp_review_full",
801
+ "financial_phrasebank/sentences_allagree",
802
+ "poem_sentiment",
803
+ "dbpedia_14/dbpedia_14",
804
+ "amazon_polarity/amazon_polarity",
805
+ "app_reviews",
806
+ "hate_speech18",
807
+ "sms_spam",
808
+ "humicroedit/subtask-1",
809
+ "humicroedit/subtask-2",
810
+ "snips_built_in_intents",
811
+ "hate_speech_offensive",
812
+ "yahoo_answers_topics",
813
+ "stackoverflow-questions",
814
+ "hyperpartisan_news",
815
+ "sciie",
816
+ "citation_intent",
817
+ "go_emotions/simplified",
818
+ "scicite",
819
+ "liar",
820
+ "lexical_relation_classification/BLESS",
821
+ "lexical_relation_classification/EVALution",
822
+ "lexical_relation_classification/ROOT09",
823
+ "lexical_relation_classification/CogALexV",
824
+ "lexical_relation_classification/K&H+N",
825
+ "linguisticprobing/bigram_shift",
826
+ "linguisticprobing/top_constituents",
827
+ "linguisticprobing/subj_number",
828
+ "linguisticprobing/odd_man_out",
829
+ "linguisticprobing/coordination_inversion",
830
+ "linguisticprobing/obj_number",
831
+ "linguisticprobing/past_present",
832
+ "linguisticprobing/sentence_length",
833
+ "linguisticprobing/tree_depth",
834
+ "crowdflower/tweet_global_warming",
835
+ "crowdflower/text_emotion",
836
+ "crowdflower/political-media-message",
837
+ "crowdflower/political-media-bias",
838
+ "crowdflower/airline-sentiment",
839
+ "crowdflower/sentiment_nuclear_power",
840
+ "crowdflower/political-media-audience",
841
+ "crowdflower/economic-news",
842
+ "crowdflower/corporate-messaging",
843
+ "ethics/commonsense",
844
+ "ethics/deontology",
845
+ "ethics/justice",
846
+ "ethics/virtue",
847
+ "emo/emo2019",
848
+ "google_wellformed_query",
849
+ "tweets_hate_speech_detection",
850
+ "has_part",
851
+ "wnut_17/wnut_17",
852
+ "ncbi_disease/ncbi_disease",
853
+ "acronym_identification",
854
+ "jnlpba/jnlpba",
855
+ "ontonotes_english/SpeedOfMagic--ontonotes_english",
856
+ "blog_authorship_corpus/gender",
857
+ "blog_authorship_corpus/age",
858
+ "blog_authorship_corpus/horoscope",
859
+ "blog_authorship_corpus/job",
860
+ "open_question_type",
861
+ "health_fact",
862
+ "commonsense_qa",
863
+ "mc_taco",
864
+ "ade_corpus_v2/Ade_corpus_v2_classification",
865
+ "discosense",
866
+ "circa",
867
+ "phrase_similarity",
868
+ "scientific-exaggeration-detection",
869
+ "quarel",
870
+ "fever-evidence-related/mwong--fever-related",
871
+ "numer_sense",
872
+ "dynasent/dynabench.dynasent.r1.all/r1",
873
+ "dynasent/dynabench.dynasent.r2.all/r2",
874
+ "Sarcasm_News_Headline",
875
+ "sem_eval_2010_task_8",
876
+ "auditor_review/demo-org--auditor_review",
877
+ "medmcqa",
878
+ "Dynasent_Disagreement",
879
+ "Politeness_Disagreement",
880
+ "SBIC_Disagreement",
881
+ "SChem_Disagreement",
882
+ "Dilemmas_Disagreement",
883
+ "logiqa",
884
+ "wiki_qa",
885
+ "cycic_classification",
886
+ "cycic_multiplechoice",
887
+ "sts-companion",
888
+ "commonsense_qa_2.0",
889
+ "lingnli",
890
+ "monotonicity-entailment",
891
+ "arct",
892
+ "scinli",
893
+ "naturallogic",
894
+ "onestop_qa",
895
+ "moral_stories/full",
896
+ "prost",
897
+ "dynahate",
898
+ "syntactic-augmentation-nli",
899
+ "autotnli",
900
+ "CONDAQA",
901
+ "webgpt_comparisons",
902
+ "synthetic-instruct-gptj-pairwise",
903
+ "scruples",
904
+ "wouldyourather",
905
+ "attempto-nli",
906
+ "defeasible-nli/snli",
907
+ "defeasible-nli/atomic",
908
+ "help-nli",
909
+ "nli-veridicality-transitivity",
910
+ "natural-language-satisfiability",
911
+ "lonli",
912
+ "dadc-limit-nli",
913
+ "FLUTE",
914
+ "strategy-qa",
915
+ "summarize_from_feedback/comparisons",
916
+ "folio",
917
+ "tomi-nli",
918
+ "avicenna",
919
+ "SHP",
920
+ "MedQA-USMLE-4-options-hf",
921
+ "wikimedqa/medwiki",
922
+ "cicero",
923
+ "CREAK",
924
+ "mutual",
925
+ "NeQA",
926
+ "quote-repetition",
927
+ "redefine-math",
928
+ "puzzte",
929
+ "implicatures",
930
+ "race/middle",
931
+ "race/high",
932
+ "race-c",
933
+ "spartqa-yn",
934
+ "spartqa-mchoice",
935
+ "temporal-nli",
936
+ "riddle_sense",
937
+ "clcd-english",
938
+ "twentyquestions",
939
+ "reclor",
940
+ "counterfactually-augmented-imdb",
941
+ "counterfactually-augmented-snli",
942
+ "cnli",
943
+ "boolq-natural-perturbations",
944
+ "acceptability-prediction",
945
+ "equate",
946
+ "ScienceQA_text_only",
947
+ "ekar_english",
948
+ "implicit-hate-stg1",
949
+ "chaos-mnli-ambiguity",
950
+ "headline_cause/en_simple",
951
+ "logiqa-2.0-nli",
952
+ "oasst1_dense_flat/quality",
953
+ "oasst1_dense_flat/toxicity",
954
+ "oasst1_dense_flat/helpfulness",
955
+ "PARARULE-Plus",
956
+ "mindgames",
957
+ "universal_dependencies/en_gum/deprel",
958
+ "universal_dependencies/en_ewt/deprel",
959
+ "universal_dependencies/en_partut/deprel",
960
+ "universal_dependencies/en_lines/deprel",
961
+ "ambient",
962
+ "path-naturalness-prediction",
963
+ "civil_comments/toxicity",
964
+ "civil_comments/severe_toxicity",
965
+ "civil_comments/obscene",
966
+ "civil_comments/threat",
967
+ "civil_comments/insult",
968
+ "civil_comments/identity_attack",
969
+ "civil_comments/sexual_explicit",
970
+ "cloth",
971
+ "dgen",
972
+ "oasst1_pairwise_rlhf_reward",
973
+ "I2D2",
974
+ "args_me",
975
+ "Touche23-ValueEval",
976
+ "starcon",
977
+ "banking77",
978
+ "ruletaker",
979
+ "lsat_qa/all",
980
+ "ConTRoL-nli",
981
+ "tracie",
982
+ "sherliic",
983
+ "sen-making/1",
984
+ "sen-making/2",
985
+ "winowhy",
986
+ "mbib-base/cognitive-bias",
987
+ "mbib-base/fake-news",
988
+ "mbib-base/gender-bias",
989
+ "mbib-base/hate-speech",
990
+ "mbib-base/linguistic-bias",
991
+ "mbib-base/political-bias",
992
+ "mbib-base/racial-bias",
993
+ "mbib-base/text-level-bias",
994
+ "robustLR",
995
+ "v1/gen_train234_test2to10",
996
+ "logical-fallacy",
997
+ "parade",
998
+ "cladder",
999
+ "subjectivity",
1000
+ "MOH",
1001
+ "VUAC",
1002
+ "TroFi",
1003
+ "sharc_modified/mod",
1004
+ "conceptrules_v2",
1005
+ "disrpt/eng.dep.scidtb",
1006
+ "conll2000",
1007
+ "few-nerd/supervised",
1008
+ "finer-139",
1009
+ "zero-shot-label-nli",
1010
+ "com2sense",
1011
+ "scone",
1012
+ "winodict",
1013
+ "fool-me-twice",
1014
+ "monli",
1015
+ "corr2cause",
1016
+ "lsat_qa/all",
1017
+ "apt",
1018
+ "twitter-financial-news-sentiment",
1019
+ "icl-symbol-tuning-instruct",
1020
+ "SpaceNLI",
1021
+ "propsegment/nli",
1022
+ "HatemojiBuild",
1023
+ "regset",
1024
+ "babi_nli",
1025
+ "gen_debiased_nli",
1026
+ "imppres/presupposition",
1027
+ "/prag",
1028
+ "blimp-2",
1029
+ "mmlu-4"
1030
+ ],
1031
+ "torch_dtype": "float32",
1032
+ "transformers_version": "4.30.2",
1033
+ "type_vocab_size": 0,
1034
+ "vocab_size": 128100
1035
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.30.2",
5
+ "pytorch": "2.0.1"
6
+ }
7
+ }
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7237b9fc73d4dc59365367c43b29bc84c5feb446de1b7df8654de588285d3e97
3
+ size 7663
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ace328730106f05af9e7e08ab79139a0b04085e32f20a78f2d0cf223727cbca1
3
+ size 735397417
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "[CLS]",
5
+ "do_lower_case": false,
6
+ "eos_token": "[SEP]",
7
+ "mask_token": "[MASK]",
8
+ "model_max_length": 1000000000000000019884624838656,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "sp_model_kwargs": {},
12
+ "split_by_punct": false,
13
+ "tokenizer_class": "DebertaV2Tokenizer",
14
+ "unk_token": "[UNK]",
15
+ "vocab_type": "spm"
16
+ }