State dicts generated with: ```py from diffusers import DiffusionPipeline import torch from peft import LoraConfig from peft.utils import get_peft_model_state_dict from huggingface_hub import create_repo, upload_file import tempfile import os ckpts = [ "stable-diffusion-v1-5/stable-diffusion-v1-5", "stabilityai/stable-diffusion-xl-base-1.0", "black-forest-labs/FLUX.1-dev" ] ranks = [16, 32, 128] repo_id = create_repo(repo_id="sayakpaul/dummy-lora-state-dicts", exist_ok=True).repo_id def get_lora_config(rank=16): return LoraConfig( r=rank, lora_alpha=rank, init_lora_weights="gaussian", target_modules=["to_k", "to_v", "to_q", "to_out.0"], ) def load_pipeline_and_obtain_lora(ckpt, rank): pipeline = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.bfloat16) pipeline_cls = pipeline.__class__ lora_config = get_lora_config(rank=rank) weight_name = f"r@{rank}-{ckpt.split('/')[-1]}.safetensors" with tempfile.TemporaryDirectory() as tmpdir: save_kwargs = {"weight_name": weight_name} if hasattr(pipeline, "unet"): pipeline.unet.add_adapter(lora_config) save_kwargs.update({"unet_lora_layers": get_peft_model_state_dict(pipeline.unet)}) else: pipeline.transformer.add_adapter(lora_config) save_kwargs.update({"transformer_lora_layers": get_peft_model_state_dict(pipeline.transformer)}) pipeline_cls.save_lora_weights(save_directory=tmpdir, **save_kwargs) upload_file(repo_id=repo_id, path_or_fileobj=os.path.join(tmpdir, weight_name), path_in_repo=weight_name) for ckpt in ckpts: for rank in ranks: load_pipeline_and_obtain_lora(ckpt=ckpt, rank=rank) ```