# DarkMark v1.10.18-1 output for Darknet # Project .... /home/secemp9/captchasad # Config ..... /home/secemp9/captchasad/captchasad.cfg # Template ... /opt/darknet/cfg/yolov4-tiny-3l.cfg # Username ... secemp9@secemp9-Super-Server # Timestamp .. Sat 2025-02-15 19:44:07 CET # # WARNING: If you re-generate the darknet files for this project you'll # lose any customizations you are about to make in this file! # [net] # Testing #batch=1 #subdivisions=1 # Training batch=1 subdivisions=1 width=352 height=256 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation=1.500000 exposure=1.500000 hue=0.100000 learning_rate=0.002610 burn_in=1000 max_batches=4000 policy=steps steps=3200,3600 scales=.1,.1 cutmix=0 flip=1 max_chart_loss=4.000000 mixup=1 mosaic=0 use_cuda_graph=0 [convolutional] batch_normalize=1 filters=32 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=64 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [route] layers=-1 groups=2 group_id=1 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky [route] layers = -1,-2 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky [route] layers = -6,-1 [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [route] layers=-1 groups=2 group_id=1 [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [route] layers = -1,-2 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [route] layers = -6,-1 [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [route] layers=-1 groups=2 group_id=1 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [route] layers = -1,-2 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [route] layers = -6,-1 [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky ################################## [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=18 activation=linear [yolo] mask = 6,7,8 anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 classes=1 num=9 jitter=.3 scale_x_y = 1.05 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou ignore_thresh = .7 truth_thresh = 1 random=0 resize=1.5 nms_kind=greedynms beta_nms=0.6 [route] layers = -4 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 23 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=18 activation=linear [yolo] mask = 3,4,5 anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 classes=1 num=9 jitter=.3 scale_x_y = 1.05 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou ignore_thresh = .7 truth_thresh = 1 random=0 resize=1.5 nms_kind=greedynms beta_nms=0.6 [route] layers = -3 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 15 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=18 activation=linear [yolo] mask = 0,1,2 anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 classes=1 num=9 jitter=.3 scale_x_y = 1.05 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou ignore_thresh = .7 truth_thresh = 1 random=0 resize=1.5 nms_kind=greedynms beta_nms=0.6