Tom Aarsen commited on
Commit
799acf9
·
1 Parent(s): 645fd27

embeddings models -> embedding models

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -45,9 +45,9 @@ from transformers import AutoTokenizer, AutoModel
45
  import torch
46
 
47
 
48
- #Mean Pooling - Take attention mask into account for correct averaging
49
  def mean_pooling(model_output, attention_mask):
50
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
51
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
52
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
53
 
@@ -75,7 +75,7 @@ print(sentence_embeddings)
75
 
76
  ## Usage (Text Embeddings Inference (TEI))
77
 
78
- [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embeddings models.
79
 
80
  - CPU:
81
  ```bash
 
45
  import torch
46
 
47
 
48
+ # Mean Pooling - Take attention mask into account for correct averaging
49
  def mean_pooling(model_output, attention_mask):
50
+ token_embeddings = model_output[0] # First element of model_output contains all token embeddings
51
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
52
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
53
 
 
75
 
76
  ## Usage (Text Embeddings Inference (TEI))
77
 
78
+ [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models.
79
 
80
  - CPU:
81
  ```bash