Tom Aarsen commited on
Commit
b6cfe69
·
1 Parent(s): 5459159

embeddings models -> embedding models

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -101,9 +101,9 @@ from transformers import AutoTokenizer, AutoModel
101
  import torch
102
 
103
 
104
- #Mean Pooling - Take attention mask into account for correct averaging
105
  def mean_pooling(model_output, attention_mask):
106
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
107
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
108
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
109
 
@@ -122,7 +122,7 @@ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tenso
122
  with torch.no_grad():
123
  model_output = model(**encoded_input)
124
 
125
- # Perform pooling. In this case, average pooling
126
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
127
 
128
  print("Sentence embeddings:")
@@ -132,7 +132,7 @@ print(sentence_embeddings)
132
 
133
  ## Usage (Text Embeddings Inference (TEI))
134
 
135
- [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embeddings models.
136
 
137
  - CPU:
138
  ```bash
 
101
  import torch
102
 
103
 
104
+ # Mean Pooling - Take attention mask into account for correct averaging
105
  def mean_pooling(model_output, attention_mask):
106
+ token_embeddings = model_output[0] # First element of model_output contains all token embeddings
107
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
108
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
109
 
 
122
  with torch.no_grad():
123
  model_output = model(**encoded_input)
124
 
125
+ # Perform pooling. In this case, mean pooling
126
  sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
127
 
128
  print("Sentence embeddings:")
 
132
 
133
  ## Usage (Text Embeddings Inference (TEI))
134
 
135
+ [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models.
136
 
137
  - CPU:
138
  ```bash