Tom Aarsen commited on
Commit
e64d277
·
1 Parent(s): 7dbeedb

move Usage, embeddings models -> embedding models

Browse files
Files changed (1) hide show
  1. README.md +26 -28
README.md CHANGED
@@ -45,9 +45,9 @@ from transformers import AutoTokenizer, AutoModel
45
  import torch
46
 
47
 
48
- #Mean Pooling - Take attention mask into account for correct averaging
49
  def mean_pooling(model_output, attention_mask):
50
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
51
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
52
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
53
 
@@ -73,7 +73,31 @@ print("Sentence embeddings:")
73
  print(sentence_embeddings)
74
  ```
75
 
 
 
 
 
 
 
 
 
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ## Full Model Architecture
79
  ```
@@ -99,29 +123,3 @@ If you find this model helpful, feel free to cite our publication [Sentence-BERT
99
  url = "http://arxiv.org/abs/1908.10084",
100
  }
101
  ```
102
-
103
- ## Usage (Text Embeddings Inference (TEI))
104
-
105
- [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embeddings models.
106
-
107
- - CPU:
108
- ```bash
109
- docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest --model-id sentence-transformers/stsb-mpnet-base-v2 --pooling mean --dtype float16
110
- ```
111
-
112
- - NVIDIA GPU:
113
- ```bash
114
- docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest --model-id sentence-transformers/stsb-mpnet-base-v2 --pooling mean --dtype float16
115
- ```
116
-
117
- Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create):
118
- ```bash
119
- curl http://localhost:8080/v1/embeddings \
120
- -H "Content-Type: application/json" \
121
- -d '{
122
- "model": "sentence-transformers/stsb-mpnet-base-v2",
123
- "input": ["This is an example sentence", "Each sentence is converted"]
124
- }'
125
- ```
126
-
127
- Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead.
 
45
  import torch
46
 
47
 
48
+ # Mean Pooling - Take attention mask into account for correct averaging
49
  def mean_pooling(model_output, attention_mask):
50
+ token_embeddings = model_output[0] # First element of model_output contains all token embeddings
51
  input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
52
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
53
 
 
73
  print(sentence_embeddings)
74
  ```
75
 
76
+ ## Usage (Text Embeddings Inference (TEI))
77
+
78
+ [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models.
79
+
80
+ - CPU:
81
+ ```bash
82
+ docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest --model-id sentence-transformers/stsb-mpnet-base-v2 --pooling mean --dtype float16
83
+ ```
84
 
85
+ - NVIDIA GPU:
86
+ ```bash
87
+ docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest --model-id sentence-transformers/stsb-mpnet-base-v2 --pooling mean --dtype float16
88
+ ```
89
+
90
+ Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create):
91
+ ```bash
92
+ curl http://localhost:8080/v1/embeddings \
93
+ -H "Content-Type: application/json" \
94
+ -d '{
95
+ "model": "sentence-transformers/stsb-mpnet-base-v2",
96
+ "input": ["This is an example sentence", "Each sentence is converted"]
97
+ }'
98
+ ```
99
+
100
+ Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead.
101
 
102
  ## Full Model Architecture
103
  ```
 
123
  url = "http://arxiv.org/abs/1908.10084",
124
  }
125
  ```