File size: 2,098 Bytes
13f9d3a
 
 
 
 
 
 
 
 
 
 
 
 
5cf9268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: apache-2.0
datasets:
- ibrahimhamamci/CT-RATE
metrics:
- bleu
- bertscore
- rouge
base_model:
- microsoft/Phi-3-mini-4k-instruct
tags:
- biology
- medical
---

# Welcome to SAMF model [MICCAI' 25]!
**[MICCAI' 25] From Slices to Volumes: Multi-Scale Fusion of 2D and 3D Features for CT Scan Report Generation**

| **Model**             | **Bleu1** | **Bleu4** | **RougeL** | **Meteor** | **Bert F1** | **Llama Score** |
|-----------------------|-----------|-----------|------------|------------|-------------|-----------------|
| CT2Rep            | 0.309     | 0.172     | 0.243      | 0.173      | 0.865       | 6.35            |
| CT-Chat          | 0.395     | -         | 0.321      | 0.219      | -           | 5.664           |
| Our Baseline (SAMF)   | 0.423     | 0.203     | 0.338      | 0.356      | 0.879       | 6.792         |
| SAMF + *Ao2D*              | **0.440** | **0.261** | **0.417**    | **0.417**    | **0.889**   | **7.165**       |


## Introduction



*Slice Attentive Multimodal Fusion (SAMF)* , a framework that combines the rich, high-resolution information from 2D slices with the spatial coherence of 3D volumetric data. Experimental results demonstrate that our method outperforms existing baseline approaches in both report generation and multiple-choice question answering, highlighting the critical role of multidimensional feature integration. 


## Model Description

- **Model type:** 3D Medical Report Generation and Visual Question Answering
- **Language(s) (NLP):** English
- **License:** apache-2.0
- **Finetuned from model:** microsoft/Phi-3-mini-4k-instruct

### Training Data

- **Medical Report Generation and Visual Question Answering:** [ibrahimhamamci/CT-RATE](https://huggingface.co/datasets/ibrahimhamamci/CT-RATE), default subset

### Hardware Utilization

- **Hardware Type:** 1 × NVIDIA-A100
- **Hours used** around 16 hours

### Evaluation

To perform evaluation using this model, please refer to our GitHub repository ([serag-ai/SAMF](https://github.com/serag-ai/SAMF.git)), which provides detailed information on how to use it.