File size: 2,631 Bytes
b5311cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: videomae-base-finetuned-ucf-crimevbinaryv5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucf-crimevbinaryv5

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5233
- Accuracy: 0.8730
- Precision: 0.8739
- Recall: 0.8730
- Auc: 0.9382

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5298        | 1.0   | 173  | 0.4598          | 0.7952   | 0.8100    | 0.7952 | 0.8607 |
| 0.3824        | 2.0   | 346  | 0.3941          | 0.8434   | 0.8456    | 0.8434 | 0.9138 |
| 0.4836        | 3.0   | 519  | 0.5244          | 0.8032   | 0.8348    | 0.8032 | 0.9153 |
| 0.5522        | 4.0   | 692  | 0.6005          | 0.7149   | 0.8064    | 0.7149 | 0.8669 |
| 0.3953        | 5.0   | 865  | 0.5102          | 0.8474   | 0.8512    | 0.8474 | 0.9071 |
| 0.4682        | 6.0   | 1038 | 0.5437          | 0.8715   | 0.8765    | 0.8715 | 0.9211 |
| 0.2755        | 7.0   | 1211 | 0.7215          | 0.8434   | 0.8668    | 0.8434 | 0.9279 |
| 0.0752        | 8.0   | 1384 | 0.8213          | 0.8554   | 0.8697    | 0.8554 | 0.9166 |
| 0.0448        | 9.0   | 1557 | 0.8370          | 0.8554   | 0.8571    | 0.8554 | 0.8999 |
| 0.0122        | 10.0  | 1730 | 0.7837          | 0.8715   | 0.8718    | 0.8715 | 0.9109 |
| 0.0294        | 11.0  | 1903 | 0.8141          | 0.8715   | 0.8718    | 0.8715 | 0.9079 |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3