|
from typing import Dict, Any
|
|
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
|
from PIL import Image
|
|
import torch
|
|
|
|
class EndpointHandler():
|
|
def __init__(self, path=""):
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.model = AutoModelForZeroShotObjectDetection.from_pretrained(path).to(self.device)
|
|
self.processor = AutoProcessor.from_pretrained(path)
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
if "image" not in data or "text" not in data:
|
|
return {"error": "Payload must contain 'image' (base64 or URL) and 'text' (queries)."}
|
|
|
|
|
|
image = Image.open(data["image"]) if isinstance(data["image"], str) else data["image"]
|
|
|
|
|
|
text_queries = data["text"]
|
|
if isinstance(text_queries, list):
|
|
text_queries = ". ".join([t.lower().strip() + "." for t in text_queries])
|
|
|
|
|
|
inputs = self.processor(images=image, text=text_queries, return_tensors="pt").to(self.device)
|
|
|
|
|
|
with torch.no_grad():
|
|
outputs = self.model(**inputs)
|
|
|
|
|
|
results = self.processor.post_process_grounded_object_detection(
|
|
outputs,
|
|
inputs.input_ids,
|
|
box_threshold=0.4,
|
|
text_threshold=0.3,
|
|
target_sizes=[image.size[::-1]]
|
|
)
|
|
|
|
|
|
return {
|
|
"detections": results
|
|
}
|
|
|