# coding=utf-8 # This file was created for the HyperCLOVA X SEED 14B Think architecture. # partially copied and modified from https://github.com/huggingface/transformers # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Union import torch import torch.utils.checkpoint from torch import nn from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.generation import GenerationMixin from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.integrations import use_kernel_forward_from_hub from transformers.generation.logits_process import LogitsProcessor, LogitsProcessorList from transformers.modeling_flash_attention_utils import FlashAttentionKwargs from typing import List, Iterable, Optional, Union, Tuple from collections import deque import os from transformers.modeling_layers import GradientCheckpointingLayer from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging from .configuration_hyperclovax import HyperCLOVAXConfig if is_torch_flex_attn_available(): from torch.nn.attention.flex_attention import BlockMask from transformers.integrations.flex_attention import make_flex_block_causal_mask logger = logging.get_logger(__name__) # ================= DeepConf: confidence-based online early stop ================= class DeepConfEOSLogitsProcessor(LogitsProcessor): """ Per-sample early stop: at each step, compute token_conf = mean(logprob of top-r), maintain group_conf = mean of last `window` token_conf; if group_conf < threshold, force EOS for THAT sample by setting EOS logprob=0 and others to -inf. """ def __init__( self, eos_token_ids: List[int], window: int = 512, top_r: int = 5, threshold: float = -3.5, warmup_tokens: int = 0, prefer_eos_ids: Optional[List[int]] = None, require_prev_id: Optional[int] = None, ): self.eos_ids: List[int] = sorted({int(i) for i in (eos_token_ids or []) if i is not None and i >= 0}) self.window: int = max(int(window), 1) self.top_r: int = max(int(top_r), 1) self.threshold: float = float(threshold) self.warmup_tokens: int = max(int(warmup_tokens), 0) self.prefer_eos_ids: List[int] = sorted({int(i) for i in (prefer_eos_ids or []) if i is not None and i >= 0}) self.require_prev_id = require_prev_id self._buffers: Optional[List[deque]] = None self._verbose: bool = os.getenv("HYPERCLOVA_DEEPCONF_VERBOSE", "0").strip().lower() in {"1","on","true"} self._every: int = max(int(os.getenv("HYPERCLOVA_DEEPCONF_REPORT_EVERY", "64")), 1) self._tick: int = 0 self._stops: int = 0 def _ensure(self, bsz: int) -> None: if self._buffers is None or len(self._buffers) != bsz: self._buffers = [deque(maxlen=self.window) for _ in range(bsz)] @torch.no_grad() def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: bsz, vocab = scores.shape self._ensure(bsz) logprobs = torch.log_softmax(scores, dim=-1) # (B, V) k = min(self.top_r, vocab) token_conf = torch.topk(logprobs, k=k, dim=-1).values.mean(dim=-1) # (B,) stopped = False for i, c in enumerate(token_conf.tolist()): buf = self._buffers[i]; buf.append(c) group_conf = sum(buf) / len(buf) # --- warmup gate: do not early-stop until we have enough tokens --- if len(buf) < self.warmup_tokens: continue # ChatML protection: only force preferred EOS after the required previous token prev_ok = True if self.require_prev_id is not None: prev_tok = int(input_ids[i, -1].item()) if input_ids is not None and input_ids.size(1) > 0 else -1 prev_ok = (prev_tok == self.require_prev_id) if group_conf < self.threshold and (self.prefer_eos_ids or self.eos_ids) and prev_ok: # Prefer ChatML end tokens if available; else fall back to config eos targets = self.prefer_eos_ids if self.prefer_eos_ids else self.eos_ids scores[i].fill_(-float("inf")) for eid in targets: if 0 <= eid < vocab: scores[i, eid] = 0.0 self._stops += 1 stopped = True if self._verbose: self._tick += 1 if self._tick % self._every == 0: try: gcs = [(sum(b)/len(b)) if b else float("nan") for b in (self._buffers or [])] valid = [x for x in gcs if not (x != x)] mean_gc = float(sum(valid)/max(1, len(valid))) except Exception: mean_gc = float("nan") print(f"[DeepConf] step={self._tick} mean_gc={mean_gc:.4f} stops={self._stops}") return scores # (optional) Offline helper: Lowest Group Confidence (LGC) def deepconf_lgc_from_scores(scores_list: Iterable[torch.Tensor], top_r: int = 5, window: int = 2048) -> float: tensors = [s for s in scores_list] if not tensors: return float("-inf") with torch.no_grad(): vals = [ torch.topk(torch.log_softmax(s, dim=-1), k=min(top_r, s.size(-1)), dim=-1).values.mean(dim=-1) for s in tensors ] # each (B,) conf = torch.stack(vals).squeeze(-1) # (T,) if B=1 w = min(int(window), conf.numel()) kernel = torch.ones(1,1,w, device=conf.device) / w run = torch.nn.functional.conv1d(conf.view(1,1,-1), weight=kernel).squeeze() return float(run.min().item()) # ============================================================================== @use_kernel_forward_from_hub("RMSNorm") class HyperCLOVAXRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ HyperCLOVAXRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" ALL_LAYERNORM_LAYERS.append(HyperCLOVAXRMSNorm) class HyperCLOVAXRotaryEmbedding(nn.Module): def __init__(self, config: HyperCLOVAXConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class HyperCLOVAXMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class HyperCLOVAXAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: HyperCLOVAXConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = getattr(config, "attention_multiplier", self.head_dim**-0.5) # MuP self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class HyperCLOVAXDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: HyperCLOVAXConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = HyperCLOVAXAttention(config=config, layer_idx=layer_idx) self.mlp = HyperCLOVAXMLP(config) self.input_layernorm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.use_post_norm = getattr(config, "use_post_norm", False) # Peri-LN (post-norm) if self.use_post_norm: self.post_norm1 = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_norm2 = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.residual_multiplier = getattr(config, "residual_multiplier", 1.0) # MuP def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) if self.use_post_norm: # Peri-LN hidden_states = self.post_norm1(hidden_states) hidden_states = residual + hidden_states * self.residual_multiplier # MuP # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) if self.use_post_norm: # Peri-LN hidden_states = self.post_norm2(hidden_states) hidden_states = residual + hidden_states * self.residual_multiplier # MuP outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs @auto_docstring class HyperCLOVAXPreTrainedModel(PreTrainedModel): config_class = HyperCLOVAXConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["HyperCLOVAXDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True _supports_attention_backend = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, HyperCLOVAXRMSNorm): module.weight.data.fill_(1.0) @auto_docstring class HyperCLOVAXModel(HyperCLOVAXPreTrainedModel): def __init__(self, config: HyperCLOVAXConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [HyperCLOVAXDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = HyperCLOVAXRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = HyperCLOVAXRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() # MuP self.embedding_multiplier = getattr(config, "embedding_multiplier", 1.0) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache if not isinstance(past_key_values, (type(None), Cache)): raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) inputs_embeds = inputs_embeds * self.embedding_multiplier # MuP if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) def _update_causal_mask( self, attention_mask: Union[torch.Tensor, "BlockMask"], input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None if self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask) return attention_mask # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype = input_tensor.dtype sequence_length = input_tensor.shape[1] if using_compilable_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu", "npu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... @auto_docstring class HyperCLOVAXForCausalLM(HyperCLOVAXPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config): super().__init__(config) self.model = HyperCLOVAXModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.logits_scaling = getattr(config, "logits_scaling", 1.0) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # -------- DeepConf helpers ---------- def _dc_collect_eos(self, explicit: Optional[Union[int, List[int]]] = None, **kwargs) -> List[int]: ids: List[int] = [] if explicit is not None: ids.extend([int(x) for x in (explicit if isinstance(explicit, (list,tuple)) else [explicit])]) else: if getattr(self.config, "eos_token_id", None) is not None: ids.append(int(self.config.eos_token_id)) if getattr(self.config, "eos_token_id_list", None): ids.extend(int(x) for x in self.config.eos_token_id_list if x is not None) extra = os.getenv("HYPERCLOVA_DEEPCONF_EOS_IDS", "").strip() if extra: ids.extend(int(tok) for tok in extra.split(",") if tok.strip().isdigit()) return sorted({i for i in ids if i >= 0}) def _dc_enabled(self) -> bool: enabled = True env = os.getenv("HYPERCLOVA_DEEPCONF", "").strip().lower() if env in {"0","off","false"}: enabled = False elif env in {"1","on","true"}: enabled = True cfg_en = getattr(self.config, "deepconf_enable", None) if cfg_en is not None: enabled = bool(cfg_en) # If config is specified, it takes precedence if getattr(self.config, "deepconf_disable", False): enabled = False # Force OFF flag return enabled def _dc_params(self) -> Tuple[int,int,float,int]: def env_int(k, d): v=os.getenv(k); return int(v) if v not in (None,"") else d def env_flt(k, d): v=os.getenv(k); return float(v) if v not in (None,"") else d window = env_int("HYPERCLOVA_DEEPCONF_WINDOW", getattr(self.config, "deepconf_window", 512)) top_r = env_int("HYPERCLOVA_DEEPCONF_TOPR", getattr(self.config, "deepconf_top_r", 5)) thr = env_flt("HYPERCLOVA_DEEPCONF_THRESH", getattr(self.config, "deepconf_threshold", -3.5)) warmup = env_int("HYPERCLOVA_DEEPCONF_WARMUP", getattr(self.config, "deepconf_warmup_tokens", 0)) return window, top_r, thr, warmup def deepconf_generate(self, *args, eos_token_id: Optional[Union[int, List[int]]] = None, window: int = 512, top_r: int = 5, threshold: float = -3.5, warmup_tokens: int = 0, **kwargs): # Prefer ChatML stop strings if tokenizer+stop_strings are provided prefer_ids: List[int] = [] tok = kwargs.get("tokenizer", None) stop_strings = kwargs.get("stop_strings", None) if tok is not None and stop_strings: for s in stop_strings: try: eid = tok.convert_tokens_to_ids(s) if isinstance(eid, int) and eid >= 0: prefer_ids.append(int(eid)); continue except Exception: pass try: enc = tok.encode(s, add_special_tokens=False) if isinstance(enc, list) and len(enc) == 1: prefer_ids.append(int(enc[0])) except Exception: pass lp: LogitsProcessorList = kwargs.pop("logits_processor", None) or LogitsProcessorList() lp.append( DeepConfEOSLogitsProcessor( self._dc_collect_eos(eos_token_id, **kwargs), window, top_r, threshold, warmup_tokens=warmup_tokens, prefer_eos_ids=prefer_ids or None ) ) kwargs["logits_processor"] = lp return super().generate(*args, **kwargs) # Override generate() to be default ON (auto-attach DeepConf; merge with external lps) def generate(self, *args, **kwargs): if self._dc_enabled(): eos_ids = self._dc_collect_eos(kwargs.get("eos_token_id", None), **kwargs) # Prefer ChatML end tokens if provided prefer_ids: List[int] = [] tok = kwargs.get("tokenizer", None) stop_strings = kwargs.get("stop_strings", None) im_end_id = None if tok is not None and stop_strings: for s in stop_strings: try: eid = tok.convert_tokens_to_ids(s) if isinstance(eid, int) and eid >= 0: prefer_ids.append(int(eid)); continue except Exception: pass try: enc = tok.encode(s, add_special_tokens=False) if isinstance(enc, list) and len(enc) == 1: prefer_ids.append(int(enc[0])) except Exception: pass # For ChatML protection: extract <|im_end|> id if tok is not None: try: im_end_id = tok.convert_tokens_to_ids("<|im_end|>") if not isinstance(im_end_id, int) or im_end_id < 0: im_end_id = None except Exception: im_end_id = None if eos_ids: window, top_r, thr, warmup = self._dc_params() require_prev = None if (os.getenv("HYPERCLOVA_DEEPCONF_REQUIRE_IM_END", "1").lower() in {"1","on","true"}) and prefer_ids and im_end_id is not None: require_prev = im_end_id lp: LogitsProcessorList = kwargs.pop("logits_processor", None) or LogitsProcessorList() if os.getenv("HYPERCLOVA_DEEPCONF_VERBOSE_ATTACH","0") in {"1","on","true"}: print(f"[DeepConf] attach window={window} top_r={top_r} thr={thr} warmup={warmup} eos={eos_ids} prefer={prefer_ids} require_prev={require_prev}") lp.append( DeepConfEOSLogitsProcessor( eos_ids, window, top_r, thr, warmup_tokens=warmup, prefer_eos_ids=prefer_ids or None, require_prev_id=require_prev ) ) kwargs["logits_processor"] = lp return super().generate(*args, **kwargs) def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, HyperCLOVAXForCausalLM >>> model = HyperCLOVAXForCausalLM.from_pretrained("naver-hyperclovax/{model_name}") >>> tokenizer = AutoTokenizer.from_pretrained("naver-hyperclovax/{model_name}") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep # MuP logits = self.lm_head(hidden_states[:, slice_indices, :]) * self.logits_scaling loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @auto_docstring( custom_intro=""" The HyperCLOVAX Model transformer with a sequence classification head on top (linear layer). [`HyperCLOVAXForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """ ) class HyperCLOVAXForSequenceClassification(HyperCLOVAXPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = HyperCLOVAXModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> SequenceClassifierOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) hidden_states = transformer_outputs.last_hidden_state logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @auto_docstring class HyperCLOVAXForQuestionAnswering(HyperCLOVAXPreTrainedModel): base_model_prefix = "transformer" # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->HyperCLOVAX def __init__(self, config): super().__init__(config) self.transformer = HyperCLOVAXModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.transformer.embed_tokens def set_input_embeddings(self, value): self.transformer.embed_tokens = value @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, **kwargs, ) -> QuestionAnsweringModelOutput: outputs: BaseModelOutputWithPast = self.transformer( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() loss = None if start_positions is not None and end_positions is not None: loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs) return QuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @auto_docstring class HyperCLOVAXForTokenClassification(HyperCLOVAXPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = HyperCLOVAXModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> TokenClassifierOutput: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "HyperCLOVAXForCausalLM", "HyperCLOVAXModel", "HyperCLOVAXPreTrainedModel", "HyperCLOVAXForSequenceClassification", "HyperCLOVAXForQuestionAnswering", "HyperCLOVAXForTokenClassification", ]