AdityaAdaki commited on
Commit
f93bf21
·
1 Parent(s): a86ff24
Files changed (1) hide show
  1. README.md +54 -6
README.md CHANGED
@@ -1,9 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # AgriAssist-LLM: Plant Disease Information Assistant
2
 
3
  AgriAssist-LLM is a fine-tuned large language model based on Llama3.2:1B, specifically designed to provide detailed, actionable information about plant diseases to Indian farmers. It offers clear, concise, and locally relevant guidance on disease identification, symptoms, causes, severity, and treatment measures across major crops such as Sugarcane, Maize, Cotton, Rice, and Wheat.
4
 
5
- [![Hugging Face Model Card](https://img.shields.io/badge/Hugging%20Face-Model%20Card-orange)](https://huggingface.co/sikeaditya/agri_assist_llm)
6
-
7
  ## Features
8
 
9
  - **Tailored Guidance:** Provides comprehensive details on various plant diseases affecting Indian crops.
@@ -33,18 +85,14 @@ Here’s an example of how to use AgriAssist-LLM with the Hugging Face Transform
33
 
34
  ```python
35
  from transformers import AutoTokenizer, AutoModelForCausalLM
36
-
37
  # Load the tokenizer and model from the Hugging Face Hub
38
  tokenizer = AutoTokenizer.from_pretrained("your-username/AgriAssist-LLM")
39
  model = AutoModelForCausalLM.from_pretrained("your-username/AgriAssist-LLM")
40
-
41
  # Define a prompt
42
  prompt = "Explain Red Rot in sugarcane in simple terms for Indian farmers."
43
-
44
  # Tokenize and generate a response
45
  inputs = tokenizer(prompt, return_tensors="pt")
46
  outputs = model.generate(**inputs, max_new_tokens=256)
47
-
48
  # Decode and print the generated response
49
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
50
  ```
 
1
+ ---
2
+ title: "AgriAssist-LLM: Plant Disease Information Assistant"
3
+ description: "AgriAssist-LLM is a fine-tuned large language model based on Llama3.2:1B, designed to assist Indian farmers with plant disease identification and management."
4
+ version: "1.0"
5
+ author: "Sike Aditya"
6
+ repository: "https://huggingface.co/sikeaditya/agri_assist_llm"
7
+ tags:
8
+ - Agriculture
9
+ - Plant Disease
10
+ - LLM
11
+ - AI
12
+ - India
13
+ model:
14
+ base: "meta/Llama3.2:1B"
15
+ fine_tuning_dataset: "1000 samples focusing on plant diseases in Indian agriculture"
16
+ format: "Alpaca Instruct Format"
17
+ usage:
18
+ - "Farmers"
19
+ - "Agronomists"
20
+ - "Agricultural extension workers"
21
+ installation:
22
+ ollama: "curl -fsSL https://ollama.ai/install.sh | sh"
23
+ usage_examples:
24
+ - command: "ollama run AgriAssist-LLM 'Explain Red Rot in sugarcane in simple terms for Indian farmers.'"
25
+ description: "Provides an easy-to-understand explanation of Red Rot disease in sugarcane."
26
+ dataset:
27
+ crops:
28
+ Sugarcane:
29
+ - "Bacterial Blight"
30
+ - "Healthy"
31
+ - "Red Rot"
32
+ Maize:
33
+ - "Blight"
34
+ - "Common Rust"
35
+ - "Gray Leaf Spot"
36
+ - "Healthy"
37
+ Cotton:
38
+ - "Bacterial Blight"
39
+ - "Curl Virus"
40
+ - "Fusarium Wilt"
41
+ - "Healthy"
42
+ Rice:
43
+ - "Bacterial Blight"
44
+ - "Blast"
45
+ - "Brownspot"
46
+ - "Tungro"
47
+ Wheat:
48
+ - "Healthy"
49
+ - "Septoria"
50
+ - "Strip Rust"
51
+ contact:
52
+ email: "[email protected]"
53
+ issues: "https://github.com/sikeaditya/agri_assist_llm/issues"
54
+ ---
55
  # AgriAssist-LLM: Plant Disease Information Assistant
56
 
57
  AgriAssist-LLM is a fine-tuned large language model based on Llama3.2:1B, specifically designed to provide detailed, actionable information about plant diseases to Indian farmers. It offers clear, concise, and locally relevant guidance on disease identification, symptoms, causes, severity, and treatment measures across major crops such as Sugarcane, Maize, Cotton, Rice, and Wheat.
58
 
 
 
59
  ## Features
60
 
61
  - **Tailored Guidance:** Provides comprehensive details on various plant diseases affecting Indian crops.
 
85
 
86
  ```python
87
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
88
  # Load the tokenizer and model from the Hugging Face Hub
89
  tokenizer = AutoTokenizer.from_pretrained("your-username/AgriAssist-LLM")
90
  model = AutoModelForCausalLM.from_pretrained("your-username/AgriAssist-LLM")
 
91
  # Define a prompt
92
  prompt = "Explain Red Rot in sugarcane in simple terms for Indian farmers."
 
93
  # Tokenize and generate a response
94
  inputs = tokenizer(prompt, return_tensors="pt")
95
  outputs = model.generate(**inputs, max_new_tokens=256)
 
96
  # Decode and print the generated response
97
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
98
  ```