Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,116 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
4 |
---
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **
|
26 |
-
- **
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
[
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
[
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.15.2
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- seeklhy/OmniSQL-32B
|
7 |
---
|
8 |
+
# GradeSQL-32B — Outcome Reward Model for Text-to-SQL
|
9 |
+
|
10 |
+
## Model Description
|
11 |
+
|
12 |
+
**GradeSQL-32B** is an Outcome Reward Model (ORM) designed to evaluate the semantic correctness of SQL queries generated from natural language questions in Text-to-SQL tasks. Rather than relying on syntactic heuristics or majority votes, GradeSQL-32B assigns a confidence score indicating whether a candidate SQL query faithfully answers the user's question based on the database schema.
|
13 |
+
|
14 |
+
Built on top of the **OmniSQL-32B** base model and finetuned on the **SPIDER** dataset, GradeSQL-32B provides a robust semantic scoring mechanism to improve query selection and alignment with user intent.
|
15 |
+
|
16 |
+
## Intended Use
|
17 |
+
|
18 |
+
- **Reranking Candidate SQL Queries:** Use GradeSQL-32B to assign semantic correctness scores and select the best SQL query among multiple candidates generated by LLMs.
|
19 |
+
- **Enhancing Text-to-SQL Pipelines:** Integrate as a reward or reranking model to improve execution accuracy and semantic fidelity in Text-to-SQL systems.
|
20 |
+
- **Evaluation and Research:** Analyze the semantic alignment of SQL queries with natural language questions to identify and mitigate errors.
|
21 |
+
|
22 |
+
## Finetuning Configuration
|
23 |
+
|
24 |
+
The following **LoRA configuration** was used to train this model:
|
25 |
+
|
26 |
+
- **R**: `16` (rank of the low-rank matrices)
|
27 |
+
- **Lora Alpha**: `64` (scaling factor for the low-rank update)
|
28 |
+
- **Target Modules**: `{q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj}`
|
29 |
+
- **Lora Dropout**: `0.05`
|
30 |
+
- **Bias**: `"none"` (bias terms are frozen)
|
31 |
+
- **FP16**: `True` (half-precision training)
|
32 |
+
- **Learning Rate**: `7e-5`
|
33 |
+
- **Train Batch Size**: `5`
|
34 |
+
- **Num. Train Epochs**: `50`
|
35 |
+
|
36 |
+
## Usage Example
|
37 |
+
|
38 |
+
```python
|
39 |
+
import torch
|
40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
41 |
+
from peft import PeftModel
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
prompt = """Question: What is the total horses record for each farm, sorted ascending?
|
46 |
+
CREATE TABLE competition_record (
|
47 |
+
Competition_ID number, -- example: [1, 2]
|
48 |
+
Farm_ID number, -- example: [2, 3]
|
49 |
+
Rank number, -- example: [1, 2]
|
50 |
+
PRIMARY KEY (Competition_ID),
|
51 |
+
CONSTRAINT fk_competition_record_competition_id FOREIGN KEY (Competition_ID) REFERENCES farm_competition (Competition_ID),
|
52 |
+
CONSTRAINT fk_competition_record_farm_id FOREIGN KEY (Farm_ID) REFERENCES farm (Farm_ID)
|
53 |
+
);
|
54 |
+
|
55 |
+
CREATE TABLE city (
|
56 |
+
City_ID number, -- example: [1, 2]
|
57 |
+
Status text, -- example: ['Town', 'Village']
|
58 |
+
PRIMARY KEY (City_ID)
|
59 |
+
);
|
60 |
+
|
61 |
+
CREATE TABLE farm_competition (
|
62 |
+
Competition_ID number, -- example: [1, 2]
|
63 |
+
Host_city_ID number, -- example: [1, 2]
|
64 |
+
PRIMARY KEY (Competition_ID),
|
65 |
+
CONSTRAINT fk_farm_competition_host_city_id FOREIGN KEY (Host_city_ID) REFERENCES city (City_ID)
|
66 |
+
);
|
67 |
+
|
68 |
+
CREATE TABLE farm (
|
69 |
+
Farm_ID number, -- example: [1, 2]
|
70 |
+
Total_Horses number, -- example: [5056.5, 5486.9]
|
71 |
+
Total_Cattle number, -- example: [8374.5, 8604.8]
|
72 |
+
PRIMARY KEY (Farm_ID)
|
73 |
+
);
|
74 |
+
What is the total horses record for each farm, sorted ascending?
|
75 |
+
SQL: SELECT SUM(Total_Horses) AS Total_Horses, Farm_ID
|
76 |
+
FROM farm
|
77 |
+
GROUP BY Farm_ID
|
78 |
+
ORDER BY SUM(Total_Horses) ASC;
|
79 |
+
Is the SQL correct?"""
|
80 |
+
|
81 |
+
base_model = AutoModelForCausalLM.from_pretrained("seeklhy/OmniSQL-32B", torch_dtype="auto", device_map="auto")
|
82 |
+
peft_model = PeftModel.from_pretrained(base_model, "sisinflab-ai/GradeSQL-32B-ORM-Bird")
|
83 |
+
orm_model = peft_model.merge_and_unload()
|
84 |
+
orm_tokenizer = AutoTokenizer.from_pretrained("seeklhy/OmniSQL-32B", use_fast=True)
|
85 |
+
|
86 |
+
del base_model
|
87 |
+
del peft_model
|
88 |
+
|
89 |
+
inputs = orm_tokenizer(prompt, return_tensors="pt").to(orm_model.device)
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
outputs = orm_model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_scores=True, use_cache=False)
|
93 |
+
|
94 |
+
generated_ids = outputs.sequences[0, len(inputs.input_ids[0]):]
|
95 |
+
yes_token_id = orm_tokenizer.convert_tokens_to_ids("ĠYes")
|
96 |
+
no_token_id = orm_tokenizer.convert_tokens_to_ids("ĠNo")
|
97 |
+
|
98 |
+
yes_no_pos = None
|
99 |
+
for i, token_id in enumerate(generated_ids):
|
100 |
+
if token_id in [yes_token_id, no_token_id]:
|
101 |
+
yes_no_pos = i
|
102 |
+
break
|
103 |
+
|
104 |
+
if yes_no_pos is None:
|
105 |
+
print("[Warning]: No 'Yes' or 'No' token found in the generated output.")
|
106 |
+
print("[Score]: 0.5")
|
107 |
+
|
108 |
+
logits = outputs.scores[yes_no_pos]
|
109 |
+
probs = torch.softmax(logits, dim=-1)
|
110 |
+
yes_prob = probs[0, yes_token_id].item()
|
111 |
+
generated_answer = "Yes" if generated_ids[yes_no_pos] == yes_token_id else "No"
|
112 |
+
|
113 |
+
if generated_answer == "Yes":
|
114 |
+
print("[Score]: ", yes_prob)
|
115 |
+
elif generated_answer == "No":
|
116 |
+
print("[Score]: ", 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|