MattiaTritto commited on
Commit
1c1ba94
·
verified ·
1 Parent(s): 1256daf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -200
README.md CHANGED
@@ -1,202 +1,116 @@
1
  ---
2
- base_model: seeklhy/OmniSQL-32B
3
- library_name: peft
 
 
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.15.2
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - seeklhy/OmniSQL-32B
7
  ---
8
+ # GradeSQL-32B — Outcome Reward Model for Text-to-SQL
9
+
10
+ ## Model Description
11
+
12
+ **GradeSQL-32B** is an Outcome Reward Model (ORM) designed to evaluate the semantic correctness of SQL queries generated from natural language questions in Text-to-SQL tasks. Rather than relying on syntactic heuristics or majority votes, GradeSQL-32B assigns a confidence score indicating whether a candidate SQL query faithfully answers the user's question based on the database schema.
13
+
14
+ Built on top of the **OmniSQL-32B** base model and finetuned on the **SPIDER** dataset, GradeSQL-32B provides a robust semantic scoring mechanism to improve query selection and alignment with user intent.
15
+
16
+ ## Intended Use
17
+
18
+ - **Reranking Candidate SQL Queries:** Use GradeSQL-32B to assign semantic correctness scores and select the best SQL query among multiple candidates generated by LLMs.
19
+ - **Enhancing Text-to-SQL Pipelines:** Integrate as a reward or reranking model to improve execution accuracy and semantic fidelity in Text-to-SQL systems.
20
+ - **Evaluation and Research:** Analyze the semantic alignment of SQL queries with natural language questions to identify and mitigate errors.
21
+
22
+ ## Finetuning Configuration
23
+
24
+ The following **LoRA configuration** was used to train this model:
25
+
26
+ - **R**: `16` (rank of the low-rank matrices)
27
+ - **Lora Alpha**: `64` (scaling factor for the low-rank update)
28
+ - **Target Modules**: `{q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj}`
29
+ - **Lora Dropout**: `0.05`
30
+ - **Bias**: `"none"` (bias terms are frozen)
31
+ - **FP16**: `True` (half-precision training)
32
+ - **Learning Rate**: `7e-5`
33
+ - **Train Batch Size**: `5`
34
+ - **Num. Train Epochs**: `50`
35
+
36
+ ## Usage Example
37
+
38
+ ```python
39
+ import torch
40
+ from transformers import AutoModelForCausalLM, AutoTokenizer
41
+ from peft import PeftModel
42
+
43
+
44
+
45
+ prompt = """Question: What is the total horses record for each farm, sorted ascending?
46
+ CREATE TABLE competition_record (
47
+ Competition_ID number, -- example: [1, 2]
48
+ Farm_ID number, -- example: [2, 3]
49
+ Rank number, -- example: [1, 2]
50
+ PRIMARY KEY (Competition_ID),
51
+ CONSTRAINT fk_competition_record_competition_id FOREIGN KEY (Competition_ID) REFERENCES farm_competition (Competition_ID),
52
+ CONSTRAINT fk_competition_record_farm_id FOREIGN KEY (Farm_ID) REFERENCES farm (Farm_ID)
53
+ );
54
+
55
+ CREATE TABLE city (
56
+ City_ID number, -- example: [1, 2]
57
+ Status text, -- example: ['Town', 'Village']
58
+ PRIMARY KEY (City_ID)
59
+ );
60
+
61
+ CREATE TABLE farm_competition (
62
+ Competition_ID number, -- example: [1, 2]
63
+ Host_city_ID number, -- example: [1, 2]
64
+ PRIMARY KEY (Competition_ID),
65
+ CONSTRAINT fk_farm_competition_host_city_id FOREIGN KEY (Host_city_ID) REFERENCES city (City_ID)
66
+ );
67
+
68
+ CREATE TABLE farm (
69
+ Farm_ID number, -- example: [1, 2]
70
+ Total_Horses number, -- example: [5056.5, 5486.9]
71
+ Total_Cattle number, -- example: [8374.5, 8604.8]
72
+ PRIMARY KEY (Farm_ID)
73
+ );
74
+ What is the total horses record for each farm, sorted ascending?
75
+ SQL: SELECT SUM(Total_Horses) AS Total_Horses, Farm_ID
76
+ FROM farm
77
+ GROUP BY Farm_ID
78
+ ORDER BY SUM(Total_Horses) ASC;
79
+ Is the SQL correct?"""
80
+
81
+ base_model = AutoModelForCausalLM.from_pretrained("seeklhy/OmniSQL-32B", torch_dtype="auto", device_map="auto")
82
+ peft_model = PeftModel.from_pretrained(base_model, "sisinflab-ai/GradeSQL-32B-ORM-Bird")
83
+ orm_model = peft_model.merge_and_unload()
84
+ orm_tokenizer = AutoTokenizer.from_pretrained("seeklhy/OmniSQL-32B", use_fast=True)
85
+
86
+ del base_model
87
+ del peft_model
88
+
89
+ inputs = orm_tokenizer(prompt, return_tensors="pt").to(orm_model.device)
90
+
91
+ with torch.no_grad():
92
+ outputs = orm_model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_scores=True, use_cache=False)
93
+
94
+ generated_ids = outputs.sequences[0, len(inputs.input_ids[0]):]
95
+ yes_token_id = orm_tokenizer.convert_tokens_to_ids("ĠYes")
96
+ no_token_id = orm_tokenizer.convert_tokens_to_ids("ĠNo")
97
+
98
+ yes_no_pos = None
99
+ for i, token_id in enumerate(generated_ids):
100
+ if token_id in [yes_token_id, no_token_id]:
101
+ yes_no_pos = i
102
+ break
103
+
104
+ if yes_no_pos is None:
105
+ print("[Warning]: No 'Yes' or 'No' token found in the generated output.")
106
+ print("[Score]: 0.5")
107
+
108
+ logits = outputs.scores[yes_no_pos]
109
+ probs = torch.softmax(logits, dim=-1)
110
+ yes_prob = probs[0, yes_token_id].item()
111
+ generated_answer = "Yes" if generated_ids[yes_no_pos] == yes_token_id else "No"
112
+
113
+ if generated_answer == "Yes":
114
+ print("[Score]: ", yes_prob)
115
+ elif generated_answer == "No":
116
+ print("[Score]: ", 0)