File size: 2,261 Bytes
7e5d395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language: en
license: apache-2.0
library_name: transformers
tags:
- agentic-rl
- agent
- qwen
- lora
- file-operations
- api-calls
base_model: Qwen/Qwen2.5-0.5B-Instruct
---

# Realistic Agentic Qwen Model

This model is fine-tuned on realistic agent tasks using agentic RL techniques. It learns to take concrete actions like file operations, API calls, and system commands.

## Model Description

- **Base Model**: Qwen/Qwen2.5-0.5B-Instruct
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- **Training Data**: 5 successful agent trajectories
- **Actions Learned**: file operations, API calls, bash commands, task completion
- **Reward System**: GRPO-style with trajectory-end rewards

## Training Results

- **Loss Improvement**: 4.4078
- **Final Loss**: 5.9926
- **Training Samples**: 5
- **Training Date**: 2025-07-24

## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "allthingssecurity/realistic-agentic-qwen"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Example usage
problem = "Create a configuration file with settings"
inputs = tokenizer(f"Task: {problem}", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
```

## Actions the Model Can Perform

- `create_file`: Create files with specific content
- `write_to_file`: Write data to existing files
- `api_call`: Make HTTP API requests
- `search_files`: Search for patterns in files
- `bash_command`: Execute safe system commands
- `complete_task`: Mark tasks as completed with validation

## Training Examples

The model was trained on tasks like:
- Creating configuration files
- Making API calls and saving responses
- Searching files for specific patterns
- Generating reports and summaries

## Limitations

- Only supports safe, predefined actions
- Simulated environment for training
- Best suited for file/API/system interaction tasks

## Citation

If you use this model, please cite:
```
@misc{realistic-agentic-qwen,
  title={Realistic Agentic Qwen Model},
  author={Smart RL Trainer},
  year={2024},
  url={https://huggingface.co/allthingssecurity/realistic-agentic-qwen}
}
```