initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- Dockerfile +14 -0
- LICENSE +21 -0
- README.md +189 -0
- app.py +133 -0
- config.py +1 -0
- data_preprocess/br35h.py +50 -0
- data_preprocess/brain_mri.py +51 -0
- data_preprocess/btad.py +52 -0
- data_preprocess/clinicdb.py +52 -0
- data_preprocess/colondb.py +52 -0
- data_preprocess/dagm-pre.py +82 -0
- data_preprocess/dagm.py +52 -0
- data_preprocess/dtd.py +52 -0
- data_preprocess/endo.py +52 -0
- data_preprocess/headct-pre.py +41 -0
- data_preprocess/headct.py +52 -0
- data_preprocess/isic.py +52 -0
- data_preprocess/mpdd.py +52 -0
- data_preprocess/mvtec.py +52 -0
- data_preprocess/sdd-pre.py +75 -0
- data_preprocess/sdd.py +52 -0
- data_preprocess/tn3k.py +52 -0
- data_preprocess/visa.py +52 -0
- dataset/__init__.py +68 -0
- dataset/base_dataset.py +138 -0
- dataset/br35h.py +18 -0
- dataset/brain_mri.py +16 -0
- dataset/btad.py +16 -0
- dataset/clinicdb.py +16 -0
- dataset/colondb.py +18 -0
- dataset/dagm.py +16 -0
- dataset/dtd.py +16 -0
- dataset/headct.py +18 -0
- dataset/isic.py +18 -0
- dataset/mpdd.py +17 -0
- dataset/mvtec.py +19 -0
- dataset/sdd.py +18 -0
- dataset/tn3k.py +18 -0
- dataset/visa.py +20 -0
- datasets/rayan_dataset.py +127 -0
- docker-compose.yml +21 -0
- evaluation/base_eval.py +293 -0
- evaluation/class_name_mapping.json +5 -0
- evaluation/eval_main.py +78 -0
- evaluation/json_score.py +98 -0
- evaluation/utils/json_helpers.py +46 -0
- evaluation/utils/metrics.py +78 -0
- install.sh +15 -0
- loss.py +189 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
Dockerfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------
|
2 |
+
# A sample Dockerfile to help you replicate our test environment
|
3 |
+
# -----------------------------------------------------------------------------
|
4 |
+
|
5 |
+
FROM pytorch/pytorch:2.4.1-cuda12.4-cudnn9-runtime
|
6 |
+
WORKDIR /app
|
7 |
+
COPY . .
|
8 |
+
|
9 |
+
# Install your python and apt requirements
|
10 |
+
RUN pip install -r requirements.txt
|
11 |
+
RUN apt-get update && apt-get install $(cat apt_requirements.txt) -y
|
12 |
+
RUN chmod +x run.sh
|
13 |
+
|
14 |
+
CMD ["python3", "runner.py"]
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Yunkang Cao
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AdaCLIP (Detecting Anomalies for Novel Categories)
|
2 |
+
[](https://huggingface.co/spaces/Caoyunkang/AdaCLIP)
|
3 |
+
|
4 |
+
> [**ECCV 24**] [**AdaCLIP: Adapting CLIP with Hybrid Learnable Prompts for Zero-Shot Anomaly Detection**](https://arxiv.org/abs/2407.15795).
|
5 |
+
>
|
6 |
+
> by [Yunkang Cao](https://caoyunkang.github.io/), [Jiangning Zhang](https://zhangzjn.github.io/), [Luca Frittoli](https://scholar.google.com/citations?user=cdML_XUAAAAJ),
|
7 |
+
> [Yuqi Cheng](https://scholar.google.com/citations?user=02BC-WgAAAAJ&hl=en), [Weiming Shen](https://scholar.google.com/citations?user=FuSHsx4AAAAJ&hl=en), [Giacomo Boracchi](https://boracchi.faculty.polimi.it/)
|
8 |
+
>
|
9 |
+
|
10 |
+
## Introduction
|
11 |
+
Zero-shot anomaly detection (ZSAD) targets the identification of anomalies within images from arbitrary novel categories.
|
12 |
+
This study introduces AdaCLIP for the ZSAD task, leveraging a pre-trained vision-language model (VLM), CLIP.
|
13 |
+
AdaCLIP incorporates learnable prompts into CLIP and optimizes them through training on auxiliary annotated anomaly detection data.
|
14 |
+
Two types of learnable prompts are proposed: \textit{static} and \textit{dynamic}. Static prompts are shared across all images, serving to preliminarily adapt CLIP for ZSAD.
|
15 |
+
In contrast, dynamic prompts are generated for each test image, providing CLIP with dynamic adaptation capabilities.
|
16 |
+
The combination of static and dynamic prompts is referred to as hybrid prompts, and yields enhanced ZSAD performance.
|
17 |
+
Extensive experiments conducted across 14 real-world anomaly detection datasets from industrial and medical domains indicate that AdaCLIP outperforms other ZSAD methods and can generalize better to different categories and even domains.
|
18 |
+
Finally, our analysis highlights the importance of diverse auxiliary data and optimized prompts for enhanced generalization capacity.
|
19 |
+
|
20 |
+
## Corrections
|
21 |
+
- The description to the utilized training set in our paper is not accurate. By default, we utilize MVTec AD & ColonDB for training,
|
22 |
+
and VisA & ClinicDB are utilized for evaluations on MVTec AD & ColonDB.
|
23 |
+
|
24 |
+
## Overview of AdaCLIP
|
25 |
+

|
26 |
+
|
27 |
+
## 🛠️ Getting Started
|
28 |
+
|
29 |
+
### Installation
|
30 |
+
To set up the AdaCLIP environment, follow one of the methods below:
|
31 |
+
|
32 |
+
- Clone this repo:
|
33 |
+
```shell
|
34 |
+
git clone https://github.com/caoyunkang/AdaCLIP.git && cd AdaCLIP
|
35 |
+
```
|
36 |
+
- You can use our provided installation script for an automated setup::
|
37 |
+
```shell
|
38 |
+
sh install.sh
|
39 |
+
```
|
40 |
+
- If you prefer to construct the experimental environment manually, follow these steps:
|
41 |
+
```shell
|
42 |
+
conda create -n AdaCLIP python=3.9.5 -y
|
43 |
+
conda activate AdaCLIP
|
44 |
+
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
|
45 |
+
pip install tqdm tensorboard setuptools==58.0.4 opencv-python scikit-image scikit-learn matplotlib seaborn ftfy regex numpy==1.26.4
|
46 |
+
pip install gradio # Optional, for app
|
47 |
+
```
|
48 |
+
- Remember to update the dataset root in config.py according to your preference:
|
49 |
+
```python
|
50 |
+
DATA_ROOT = '../datasets' # Original setting
|
51 |
+
```
|
52 |
+
|
53 |
+
### Dataset Preparation
|
54 |
+
Please download our processed visual anomaly detection datasets to your `DATA_ROOT` as needed.
|
55 |
+
|
56 |
+
#### Industrial Visual Anomaly Detection Datasets
|
57 |
+
Note: some links are still in processing...
|
58 |
+
|
59 |
+
| Dataset | Google Drive | Baidu Drive | Task
|
60 |
+
|------------|------------------|------------------| ------------------|
|
61 |
+
| MVTec AD | [Google Drive](https://drive.google.com/file/d/12IukAqxOj497J4F0Mel-FvaONM030qwP/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1k36IMP4w32hY9BXOUM5ZmA?pwd=kxud) | Anomaly Detection & Localization |
|
62 |
+
| VisA | [Google Drive](https://drive.google.com/file/d/1U0MZVro5yGgaHNQ8kWb3U1a0Qlz4HiHI/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/15CIsP-ulZ1AN0_3quA068w?pwd=lmgc) | Anomaly Detection & Localization |
|
63 |
+
| MPDD | [Google Drive](https://drive.google.com/file/d/1cLkZs8pN8onQzfyNskeU_836JLjrtJz1/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/11T3mkloDCl7Hze5znkXOQA?pwd=4p7m) | Anomaly Detection & Localization |
|
64 |
+
| BTAD | [Google Drive](https://drive.google.com/file/d/19Kd8jJLxZExwiTc9__6_r_jPqkmTXt4h/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1f4Tq-EXRz6iAswygH2WbFg?pwd=a60n) | Anomaly Detection & Localization |
|
65 |
+
| KSDD | [Google Drive](https://drive.google.com/file/d/13UidsM1taqEAVV_JJTBiCV1D3KUBpmpj/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/12EaOdkSbdK85WX5ajrfjQw?pwd=6n3z) | Anomaly Detection & Localization |
|
66 |
+
| DAGM | [Google Drive](https://drive.google.com/file/d/1f4sm8hpWQRzZMpvM-j7Q3xPG2vtdwvTy/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1JpDUJIksD99t003dNF1y9g?pwd=u3aq) | Anomaly Detection & Localization |
|
67 |
+
| DTD-Synthetic | [Google Drive](https://drive.google.com/file/d/1em51XXz5_aBNRJlJxxv3-Ed1dO9H3QgS/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/16FlvIBWtjaDzWxlZfWjNeg?pwd=aq5c) | Anomaly Detection & Localization |
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
#### Medical Visual Anomaly Detection Datasets
|
73 |
+
| Dataset | Google Drive | Baidu Drive | Task
|
74 |
+
|------------|------------------|------------------| ------------------|
|
75 |
+
| HeadCT | [Google Drive](https://drive.google.com/file/d/1ore0yCV31oLwwC--YUuTQfij-f2V32O2/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/16PfXWJlh6Y9vkecY9IownA?pwd=svsl) | Anomaly Detection |
|
76 |
+
| BrainMRI | [Google Drive](https://drive.google.com/file/d/1JLYyzcPG3ULY2J_aw1SY9esNujYm9GKd/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1UgGlTR-ABWAEiVUX-QSPhA?pwd=vh9e) | Anomaly Detection |
|
77 |
+
| Br35H | [Google Drive](https://drive.google.com/file/d/1qaZ6VJDRk3Ix3oVp3NpFyTsqXLJ_JjQy/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1yCS6t3ht6qwJgM06YsU3mg?pwd=ps1e) | Anomaly Detection |
|
78 |
+
| ISIC | [Google Drive](https://drive.google.com/file/d/1atZwmnFsz7mCsHWBZ8pkL_-Eul9bKFEx/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1Mf0w8RFY9ECZBEoNTyV3ZA?pwd=p954) | Anomaly Localization |
|
79 |
+
| ColonDB | [Google Drive](https://drive.google.com/file/d/1tjZ0o5dgzka3wf_p4ErSRJ9fcC-RJK8R/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1nJ4L65vfNFGpkK_OJjLoVg?pwd=v8q7) | Anomaly Localization |
|
80 |
+
| ClinicDB | [Google Drive](https://drive.google.com/file/d/1ciqZwMs1smSGDlwQ6tsr6YzylrqQBn9n/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1TPysfqhA_sXRPLGNwWBX6Q?pwd=3da6) | Anomaly Localization |
|
81 |
+
| TN3K | [Google Drive](https://drive.google.com/file/d/1LuKEMhrUGwFBlGCaej46WoooH89V3O8_/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1i5jMofCcRFcUdteq8VMEOQ?pwd=aoez) | Anomaly Localization |
|
82 |
+
|
83 |
+
#### Custom Datasets
|
84 |
+
To use your custom dataset, follow these steps:
|
85 |
+
|
86 |
+
1. Refer to the instructions in `./data_preprocess` to generate the JSON file for your dataset.
|
87 |
+
2. Use `./dataset/base_dataset.py` to construct your own dataset.
|
88 |
+
|
89 |
+
|
90 |
+
### Weight Preparation
|
91 |
+
|
92 |
+
We offer various pre-trained weights on different auxiliary datasets.
|
93 |
+
Please download the pre-trained weights in `./weights`.
|
94 |
+
|
95 |
+
| Pre-trained Datasets | Google Drive | Baidu Drive
|
96 |
+
|------------|------------------|------------------|
|
97 |
+
| MVTec AD & ClinicDB | [Google Drive](https://drive.google.com/file/d/1xVXANHGuJBRx59rqPRir7iqbkYzq45W0/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1K9JhNAmmDt4n5Sqlq4-5hQ?pwd=fks1) |
|
98 |
+
| VisA & ColonDB | [Google Drive](https://drive.google.com/file/d/1QGmPB0ByPZQ7FucvGODMSz7r5Ke5wx9W/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1GmRCylpboPseT9lguCO9nw?pwd=fvvf) |
|
99 |
+
| All Datasets Mentioned Above | [Google Drive](https://drive.google.com/file/d/1Cgkfx3GAaSYnXPLolx-P7pFqYV0IVzZF/view?usp=drive_link) | [Baidu Drive](https://pan.baidu.com/s/1J4aFAOhUbeYOBfZFbkOixA?pwd=0ts3) |
|
100 |
+
|
101 |
+
|
102 |
+
### Train
|
103 |
+
|
104 |
+
By default, we use MVTec AD & Colondb for training and VisA for validation:
|
105 |
+
```shell
|
106 |
+
CUDA_VISIBLE_DEVICES=0 python train.py --save_fig True --training_data mvtec colondb --testing_data visa
|
107 |
+
```
|
108 |
+
|
109 |
+
|
110 |
+
Alternatively, for evaluation on MVTec AD & Colondb, we use VisA & ClinicDB for training and MVTec AD for validation.
|
111 |
+
```shell
|
112 |
+
CUDA_VISIBLE_DEVICES=0 python train.py --save_fig True --training_data visa clinicdb --testing_data mvtec
|
113 |
+
```
|
114 |
+
Since we have utilized half-precision (FP16) for training, the training process can occasionally be unstable.
|
115 |
+
It is recommended to run the training process multiple times and choose the best model based on performance
|
116 |
+
on the validation set as the final model.
|
117 |
+
|
118 |
+
|
119 |
+
To construct a robust ZSAD model for demonstration, we also train our AdaCLIP on all AD datasets mentioned above:
|
120 |
+
```shell
|
121 |
+
CUDA_VISIBLE_DEVICES=0 python train.py --save_fig True \
|
122 |
+
--training_data \
|
123 |
+
br35h brain_mri btad clinicdb colondb \
|
124 |
+
dagm dtd headct isic mpdd mvtec sdd tn3k visa \
|
125 |
+
--testing_data mvtec
|
126 |
+
```
|
127 |
+
|
128 |
+
### Test
|
129 |
+
|
130 |
+
Manually select the best models from the validation set and place them in the `weights/` directory. Then, run the following testing script:
|
131 |
+
```shell
|
132 |
+
sh test.sh
|
133 |
+
```
|
134 |
+
|
135 |
+
If you want to test on a single image, you can refer to `test_single_image.sh`:
|
136 |
+
```shell
|
137 |
+
CUDA_VISIBLE_DEVICES=0 python test.py --testing_model image --ckt_path weights/pretrained_all.pth --save_fig True \
|
138 |
+
--image_path asset/img.png --class_name candle --save_name test.png
|
139 |
+
```
|
140 |
+
|
141 |
+
## Main Results
|
142 |
+
|
143 |
+
Due to differences in versions utilized, the reported performance may vary slightly compared to the detection performance
|
144 |
+
with the provided pre-trained weights. Some categories may show higher performance while others may show lower.
|
145 |
+
|
146 |
+

|
147 |
+

|
148 |
+

|
149 |
+
|
150 |
+
### :page_facing_up: Demo App
|
151 |
+
|
152 |
+
To run the demo application, use the following command:
|
153 |
+
|
154 |
+
```bash
|
155 |
+
python app.py
|
156 |
+
```
|
157 |
+
|
158 |
+
Or visit our [Online Demo](https://huggingface.co/spaces/Caoyunkang/AdaCLIP) for a quick start. The three pre-trained weights mentioned are available there. Feel free to test them with your own data!
|
159 |
+
|
160 |
+
Please note that we currently do not have a GPU environment for our Hugging Face Space, so inference for a single image may take approximately 50 seconds.
|
161 |
+
|
162 |
+

|
163 |
+
|
164 |
+
## 💘 Acknowledgements
|
165 |
+
Our work is largely inspired by the following projects. Thanks for their admiring contribution.
|
166 |
+
|
167 |
+
- [VAND-APRIL-GAN](https://github.com/ByChelsea/VAND-APRIL-GAN)
|
168 |
+
- [AnomalyCLIP](https://github.com/zqhang/AnomalyCLIP)
|
169 |
+
- [SAA](https://github.com/caoyunkang/Segment-Any-Anomaly)
|
170 |
+
|
171 |
+
|
172 |
+
## Stargazers over time
|
173 |
+
[](https://starchart.cc/caoyunkang/AdaCLIP)
|
174 |
+
|
175 |
+
|
176 |
+
## Citation
|
177 |
+
|
178 |
+
If you find this project helpful for your research, please consider citing the following BibTeX entry.
|
179 |
+
|
180 |
+
```BibTex
|
181 |
+
|
182 |
+
@inproceedings{AdaCLIP,
|
183 |
+
title={AdaCLIP: Adapting CLIP with Hybrid Learnable Prompts for Zero-Shot Anomaly Detection},
|
184 |
+
author={Cao, Yunkang and Zhang, Jiangning and Frittoli, Luca and Cheng, Yuqi and Shen, Weiming and Boracchi, Giacomo},
|
185 |
+
booktitle={European Conference on Computer Vision},
|
186 |
+
year={2024}
|
187 |
+
}
|
188 |
+
|
189 |
+
```
|
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
import warnings
|
4 |
+
import os
|
5 |
+
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import torch
|
9 |
+
from scipy.ndimage import gaussian_filter
|
10 |
+
import cv2
|
11 |
+
from method import AdaCLIP_Trainer
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
############ Init Model
|
15 |
+
ckt_path1 = 'weights/pretrained_mvtec_colondb.pth'
|
16 |
+
ckt_path2 = "weights/pretrained_visa_clinicdb.pth"
|
17 |
+
ckt_path3 = 'weights/pretrained_all.pth'
|
18 |
+
|
19 |
+
# Configurations
|
20 |
+
image_size = 518
|
21 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
22 |
+
# device = 'cpu'
|
23 |
+
model = "ViT-L-14-336"
|
24 |
+
prompting_depth = 4
|
25 |
+
prompting_length = 5
|
26 |
+
prompting_type = 'SD'
|
27 |
+
prompting_branch = 'VL'
|
28 |
+
use_hsf = True
|
29 |
+
k_clusters = 20
|
30 |
+
|
31 |
+
config_path = os.path.join('./model_configs', f'{model}.json')
|
32 |
+
|
33 |
+
# Prepare model
|
34 |
+
with open(config_path, 'r') as f:
|
35 |
+
model_configs = json.load(f)
|
36 |
+
|
37 |
+
# Set up the feature hierarchy
|
38 |
+
n_layers = model_configs['vision_cfg']['layers']
|
39 |
+
substage = n_layers // 4
|
40 |
+
features_list = [substage, substage * 2, substage * 3, substage * 4]
|
41 |
+
|
42 |
+
model = AdaCLIP_Trainer(
|
43 |
+
backbone=model,
|
44 |
+
feat_list=features_list,
|
45 |
+
input_dim=model_configs['vision_cfg']['width'],
|
46 |
+
output_dim=model_configs['embed_dim'],
|
47 |
+
learning_rate=0.,
|
48 |
+
device=device,
|
49 |
+
image_size=image_size,
|
50 |
+
prompting_depth=prompting_depth,
|
51 |
+
prompting_length=prompting_length,
|
52 |
+
prompting_branch=prompting_branch,
|
53 |
+
prompting_type=prompting_type,
|
54 |
+
use_hsf=use_hsf,
|
55 |
+
k_clusters=k_clusters
|
56 |
+
).to(device)
|
57 |
+
|
58 |
+
|
59 |
+
def process_image(image, text, options):
|
60 |
+
# Load the model based on selected options
|
61 |
+
if 'MVTec AD+Colondb' in options:
|
62 |
+
model.load(ckt_path1)
|
63 |
+
elif 'VisA+Clinicdb' in options:
|
64 |
+
model.load(ckt_path2)
|
65 |
+
elif 'All' in options:
|
66 |
+
model.load(ckt_path3)
|
67 |
+
else:
|
68 |
+
# Default to 'All' if no valid option is provided
|
69 |
+
model.load(ckt_path3)
|
70 |
+
print('Invalid option. Defaulting to All.')
|
71 |
+
|
72 |
+
# Ensure image is in RGB mode
|
73 |
+
image = image.convert('RGB')
|
74 |
+
|
75 |
+
# Convert PIL image to NumPy array
|
76 |
+
np_image = np.array(image)
|
77 |
+
|
78 |
+
# Convert RGB to BGR for OpenCV
|
79 |
+
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
|
80 |
+
np_image = cv2.resize(np_image, (image_size, image_size))
|
81 |
+
# Preprocess the image and run the model
|
82 |
+
img_input = model.preprocess(image).unsqueeze(0)
|
83 |
+
img_input = img_input.to(model.device)
|
84 |
+
|
85 |
+
with torch.no_grad():
|
86 |
+
anomaly_map, anomaly_score = model.clip_model(img_input, [text], aggregation=True)
|
87 |
+
|
88 |
+
# Process anomaly map
|
89 |
+
anomaly_map = anomaly_map[0, :, :].cpu().numpy()
|
90 |
+
anomaly_score = anomaly_score[0].cpu().numpy()
|
91 |
+
anomaly_map = gaussian_filter(anomaly_map, sigma=4)
|
92 |
+
anomaly_map = (anomaly_map * 255).astype(np.uint8)
|
93 |
+
|
94 |
+
# Apply color map and blend with original image
|
95 |
+
heat_map = cv2.applyColorMap(anomaly_map, cv2.COLORMAP_JET)
|
96 |
+
vis_map = cv2.addWeighted(heat_map, 0.5, np_image, 0.5, 0)
|
97 |
+
|
98 |
+
# Convert OpenCV image back to PIL image for Gradio
|
99 |
+
vis_map_pil = Image.fromarray(cv2.cvtColor(vis_map, cv2.COLOR_BGR2RGB))
|
100 |
+
|
101 |
+
return vis_map_pil, f'{anomaly_score:.3f}'
|
102 |
+
|
103 |
+
# Define examples
|
104 |
+
examples = [
|
105 |
+
["asset/img.png", "candle", "MVTec AD+Colondb"],
|
106 |
+
["asset/img2.png", "bottle", "VisA+Clinicdb"],
|
107 |
+
["asset/img3.png", "button", "All"],
|
108 |
+
]
|
109 |
+
|
110 |
+
# Gradio interface layout
|
111 |
+
demo = gr.Interface(
|
112 |
+
fn=process_image,
|
113 |
+
inputs=[
|
114 |
+
gr.Image(type="pil", label="Upload Image"),
|
115 |
+
gr.Textbox(label="Class Name"),
|
116 |
+
gr.Radio(["MVTec AD+Colondb",
|
117 |
+
"VisA+Clinicdb",
|
118 |
+
"All"],
|
119 |
+
label="Pre-trained Datasets")
|
120 |
+
],
|
121 |
+
outputs=[
|
122 |
+
gr.Image(type="pil", label="Output Image"),
|
123 |
+
gr.Textbox(label="Anomaly Score"),
|
124 |
+
],
|
125 |
+
examples=examples,
|
126 |
+
title="AdaCLIP -- Zero-shot Anomaly Detection",
|
127 |
+
description="Upload an image, enter class name, and select pre-trained datasets to do zero-shot anomaly detection"
|
128 |
+
)
|
129 |
+
|
130 |
+
# Launch the demo
|
131 |
+
demo.launch()
|
132 |
+
# demo.launch(server_name="0.0.0.0", server_port=10002)
|
133 |
+
|
config.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
DATA_ROOT = 'data'
|
data_preprocess/br35h.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
Br35h_ROOT = os.path.join(DATA_ROOT, 'Br35h_anomaly_detection')
|
7 |
+
class Br35hSolver(object):
|
8 |
+
CLSNAMES = [
|
9 |
+
'br35h',
|
10 |
+
]
|
11 |
+
|
12 |
+
def __init__(self, root=Br35h_ROOT, train_ratio=0.5):
|
13 |
+
self.root = root
|
14 |
+
self.meta_path = f'{root}/meta.json'
|
15 |
+
self.train_ratio = train_ratio
|
16 |
+
|
17 |
+
def run(self):
|
18 |
+
self.generate_meta_info()
|
19 |
+
|
20 |
+
def generate_meta_info(self):
|
21 |
+
info = dict(train={}, test={})
|
22 |
+
for cls_name in self.CLSNAMES:
|
23 |
+
cls_dir = f'{self.root}/{cls_name}'
|
24 |
+
for phase in ['train', 'test']:
|
25 |
+
cls_info = []
|
26 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
27 |
+
for specie in species:
|
28 |
+
is_abnormal = True if specie not in ['good'] else False
|
29 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
30 |
+
img_names.sort()
|
31 |
+
|
32 |
+
for idx, img_name in enumerate(img_names):
|
33 |
+
info_img = dict(
|
34 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
35 |
+
mask_path=f'',
|
36 |
+
cls_name=cls_name,
|
37 |
+
specie_name=specie,
|
38 |
+
anomaly=1 if is_abnormal else 0,
|
39 |
+
)
|
40 |
+
cls_info.append(info_img)
|
41 |
+
|
42 |
+
info[phase][cls_name] = cls_info
|
43 |
+
|
44 |
+
with open(self.meta_path, 'w') as f:
|
45 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
46 |
+
|
47 |
+
|
48 |
+
if __name__ == '__main__':
|
49 |
+
runner = Br35hSolver(root=Br35h_ROOT)
|
50 |
+
runner.run()
|
data_preprocess/brain_mri.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
BrainMRI_ROOT = os.path.join(DATA_ROOT, 'BrainMRI')
|
7 |
+
|
8 |
+
class BrainMRISolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'brain_mri',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=BrainMRI_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
img_names.sort()
|
32 |
+
|
33 |
+
for idx, img_name in enumerate(img_names):
|
34 |
+
info_img = dict(
|
35 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
36 |
+
mask_path=f'',
|
37 |
+
cls_name=cls_name,
|
38 |
+
specie_name=specie,
|
39 |
+
anomaly=1 if is_abnormal else 0,
|
40 |
+
)
|
41 |
+
cls_info.append(info_img)
|
42 |
+
|
43 |
+
info[phase][cls_name] = cls_info
|
44 |
+
|
45 |
+
with open(self.meta_path, 'w') as f:
|
46 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
runner = BrainMRISolver(root=BrainMRI_ROOT)
|
51 |
+
runner.run()
|
data_preprocess/btad.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
BTAD_ROOT = os.path.join(DATA_ROOT, 'BTech_Dataset_transformed')
|
7 |
+
|
8 |
+
class BTADSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'01', '02', '03',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=BTAD_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['ok'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = BTADSolver(root=BTAD_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/clinicdb.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
ClinicDB_ROOT = os.path.join(DATA_ROOT, 'CVC-ClinicDB')
|
7 |
+
|
8 |
+
class ClinicDBSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'ClinicDB',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=ClinicDB_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = ClinicDBSolver(root=ClinicDB_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/colondb.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
ColonDB_ROOT = os.path.join(DATA_ROOT, 'CVC-ColonDB')
|
7 |
+
|
8 |
+
class ColonDBSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'ColonDB',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=ColonDB_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = ColonDBSolver(root=ColonDB_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/dagm-pre.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
import cv2
|
5 |
+
import argparse
|
6 |
+
from config import DATA_ROOT
|
7 |
+
|
8 |
+
dataset_root = os.path.join(DATA_ROOT, 'DAGM2007')
|
9 |
+
|
10 |
+
class_names = os.listdir(dataset_root)
|
11 |
+
|
12 |
+
|
13 |
+
for class_name in class_names:
|
14 |
+
states = os.listdir(os.path.join(dataset_root, class_name))
|
15 |
+
for state in states:
|
16 |
+
images = list()
|
17 |
+
mask = list()
|
18 |
+
files = os.listdir(os.path.join(dataset_root, class_name,state))
|
19 |
+
for f in files:
|
20 |
+
if 'PNG' in f[-3:]:
|
21 |
+
images.append(f)
|
22 |
+
files = os.listdir(os.path.join(dataset_root, class_name, state,'Label'))
|
23 |
+
for f in files:
|
24 |
+
if 'PNG' in f[-3:]:
|
25 |
+
mask.append(f)
|
26 |
+
normal_image_path_train = list()
|
27 |
+
normal_image_path_test = list()
|
28 |
+
normal_image_path = list()
|
29 |
+
abnormal_image_path = list()
|
30 |
+
abnormal_image_label = list()
|
31 |
+
for f in images:
|
32 |
+
id = f[-8:-4]
|
33 |
+
flag = 0
|
34 |
+
for y in mask:
|
35 |
+
if id in y:
|
36 |
+
abnormal_image_path.append(f)
|
37 |
+
abnormal_image_label.append(y)
|
38 |
+
flag = 1
|
39 |
+
break
|
40 |
+
if flag == 0:
|
41 |
+
normal_image_path.append(f)
|
42 |
+
|
43 |
+
if len(abnormal_image_path) != len(abnormal_image_label):
|
44 |
+
raise ValueError
|
45 |
+
length = len(abnormal_image_path)
|
46 |
+
|
47 |
+
normal_image_path_test = normal_image_path[:length]
|
48 |
+
normal_image_path_train = normal_image_path[length:]
|
49 |
+
|
50 |
+
target_root = '../datasets/DAGM_anomaly_detection'
|
51 |
+
|
52 |
+
train_root = os.path.join(target_root, class_name, 'train','good')
|
53 |
+
if not os.path.exists(train_root):
|
54 |
+
os.makedirs(train_root)
|
55 |
+
for f in normal_image_path_train:
|
56 |
+
image_data = cv2.imread(os.path.join(dataset_root, class_name, state,f))
|
57 |
+
cv2.imwrite(os.path.join(train_root,f), image_data)
|
58 |
+
|
59 |
+
test_root = os.path.join(target_root, class_name, 'test','good')
|
60 |
+
if not os.path.exists(test_root):
|
61 |
+
os.makedirs(test_root)
|
62 |
+
for f in normal_image_path_test:
|
63 |
+
image_data = cv2.imread(os.path.join(dataset_root, class_name, state,f))
|
64 |
+
cv2.imwrite(os.path.join(test_root,f), image_data)
|
65 |
+
|
66 |
+
test_root = os.path.join(target_root, class_name, 'test','defect')
|
67 |
+
if not os.path.exists(test_root):
|
68 |
+
os.makedirs(test_root)
|
69 |
+
for f in abnormal_image_path:
|
70 |
+
image_data = cv2.imread(os.path.join(dataset_root, class_name, state,f))
|
71 |
+
cv2.imwrite(os.path.join(test_root,f), image_data)
|
72 |
+
|
73 |
+
test_root = os.path.join(target_root, class_name, 'ground_truth','defect')
|
74 |
+
if not os.path.exists(test_root):
|
75 |
+
os.makedirs(test_root)
|
76 |
+
for f in mask:
|
77 |
+
image_data = cv2.imread(os.path.join(dataset_root, class_name, state,'Label',f))
|
78 |
+
cv2.imwrite(os.path.join(test_root,f), image_data)
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
print("Done")
|
data_preprocess/dagm.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
DAGM_ROOT = os.path.join(DATA_ROOT, 'DAGM_anomaly_detection')
|
7 |
+
|
8 |
+
class DAGMSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'Class1', 'Class2', 'Class3', 'Class4', 'Class5','Class6','Class7','Class8','Class9','Class10',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=DAGM_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = DAGMSolver(root=DAGM_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/dtd.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
DTD_ROOT = os.path.join(DATA_ROOT, 'DTD-Synthetic')
|
7 |
+
|
8 |
+
class DTDSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'Blotchy_099', 'Fibrous_183', 'Marbled_078', 'Matted_069', 'Mesh_114','Perforated_037','Stratified_154','Woven_001','Woven_068','Woven_104','Woven_125','Woven_127',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=DTD_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = DTDSolver(root=DTD_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/endo.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
ENDO_ROOT = os.path.join(DATA_ROOT, 'EndoTect')
|
7 |
+
|
8 |
+
class ENDOSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'endo',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=ENDO_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = ENDOSolver(root=ENDO_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/headct-pre.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
import shutil
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
from config import DATA_ROOT
|
8 |
+
|
9 |
+
dataset_root = os.path.join(DATA_ROOT, 'head_ct')
|
10 |
+
|
11 |
+
label_file = os.path.join(dataset_root, 'labels.csv')
|
12 |
+
|
13 |
+
data = np.loadtxt(label_file, dtype=int, delimiter=',', skiprows=1)
|
14 |
+
|
15 |
+
fnames = data[:, 0]
|
16 |
+
label = data[:, 1]
|
17 |
+
|
18 |
+
normal_fnames = fnames[label==0]
|
19 |
+
outlier_fnames = fnames[label==1]
|
20 |
+
|
21 |
+
|
22 |
+
target_root = '../datasets/HeadCT_anomaly_detection/headct'
|
23 |
+
train_root = os.path.join(target_root, 'train/good')
|
24 |
+
if not os.path.exists(train_root):
|
25 |
+
os.makedirs(train_root)
|
26 |
+
|
27 |
+
test_normal_root = os.path.join(target_root, 'test/good')
|
28 |
+
if not os.path.exists(test_normal_root):
|
29 |
+
os.makedirs(test_normal_root)
|
30 |
+
for f in normal_fnames:
|
31 |
+
source = os.path.join(dataset_root, 'head_ct/', '{:0>3d}.png'.format(f))
|
32 |
+
shutil.copy(source, test_normal_root)
|
33 |
+
|
34 |
+
test_outlier_root = os.path.join(target_root, 'test/defect')
|
35 |
+
if not os.path.exists(test_outlier_root):
|
36 |
+
os.makedirs(test_outlier_root)
|
37 |
+
for f in outlier_fnames:
|
38 |
+
source = os.path.join(dataset_root, 'head_ct/', '{:0>3d}.png'.format(f))
|
39 |
+
shutil.copy(source, test_outlier_root)
|
40 |
+
|
41 |
+
print('Done')
|
data_preprocess/headct.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
# from dataset import MPDD_ROOT
|
5 |
+
# from dataset.mpdd import MPDD_ROOT
|
6 |
+
|
7 |
+
|
8 |
+
HEADCT_ROOT = '../datasets/HeadCT_anomaly_detection'
|
9 |
+
class HEADCTSolver(object):
|
10 |
+
CLSNAMES = [
|
11 |
+
'headct',
|
12 |
+
]
|
13 |
+
|
14 |
+
def __init__(self, root=HEADCT_ROOT, train_ratio=0.5):
|
15 |
+
self.root = root
|
16 |
+
self.meta_path = f'{root}/meta.json'
|
17 |
+
self.train_ratio = train_ratio
|
18 |
+
|
19 |
+
def run(self):
|
20 |
+
self.generate_meta_info()
|
21 |
+
|
22 |
+
def generate_meta_info(self):
|
23 |
+
info = dict(train={}, test={})
|
24 |
+
for cls_name in self.CLSNAMES:
|
25 |
+
cls_dir = f'{self.root}/{cls_name}'
|
26 |
+
for phase in ['train', 'test']:
|
27 |
+
cls_info = []
|
28 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
29 |
+
for specie in species:
|
30 |
+
is_abnormal = True if specie not in ['good'] else False
|
31 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
32 |
+
img_names.sort()
|
33 |
+
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = HEADCTSolver(root=HEADCT_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/isic.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
ISIC_ROOT = os.path.join(DATA_ROOT, 'ISIC')
|
7 |
+
|
8 |
+
class ISICSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'isic',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=ISIC_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = ISICSolver(root=ISIC_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/mpdd.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
MPDD_ROOT = os.path.join(DATA_ROOT, 'MPDD')
|
7 |
+
|
8 |
+
class MPDDSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'bracket_black', 'bracket_brown', 'bracket_white', 'connector', 'metal_plate','tubes',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=MPDD_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = MPDDSolver(root=MPDD_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/mvtec.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from dataset import MVTEC_ROOT
|
5 |
+
|
6 |
+
class MVTecSolver(object):
|
7 |
+
CLSNAMES = [
|
8 |
+
'bottle', 'cable', 'capsule', 'carpet', 'grid',
|
9 |
+
'hazelnut', 'leather', 'metal_nut', 'pill', 'screw',
|
10 |
+
'tile', 'toothbrush', 'transistor', 'wood', 'zipper',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=MVTEC_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = MVTecSolver(root=MVTEC_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/sdd-pre.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
import cv2
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
from config import DATA_ROOT
|
8 |
+
|
9 |
+
dataset_root = os.path.join(DATA_ROOT, 'KolektorSDD')
|
10 |
+
|
11 |
+
dirs = os.listdir(dataset_root)
|
12 |
+
normal_images = list()
|
13 |
+
normal_labels = list()
|
14 |
+
normal_fname = list()
|
15 |
+
outlier_images = list()
|
16 |
+
outlier_labels = list()
|
17 |
+
outlier_fname = list()
|
18 |
+
for d in dirs:
|
19 |
+
files = os.listdir(os.path.join(dataset_root, d))
|
20 |
+
images = list()
|
21 |
+
for f in files:
|
22 |
+
if 'jpg' in f[-3:]:
|
23 |
+
images.append(f)
|
24 |
+
|
25 |
+
for image in images:
|
26 |
+
split_images = list()
|
27 |
+
split_labels = list()
|
28 |
+
image_name = image.split('.')[0]
|
29 |
+
image_data = cv2.imread(os.path.join(dataset_root, d, image))
|
30 |
+
label_data = cv2.imread(os.path.join(dataset_root, d, image_name + '_label.bmp'))
|
31 |
+
if image_data.shape != label_data.shape:
|
32 |
+
raise ValueError
|
33 |
+
image_length = image_data.shape[0]
|
34 |
+
split_images.append(image_data[:image_length // 3, :, :])
|
35 |
+
split_images.append(image_data[image_length // 3:image_length * 2 // 3, :, :])
|
36 |
+
split_images.append(image_data[image_length * 2 // 3:, :, :])
|
37 |
+
split_labels.append(label_data[:image_length // 3, :, :])
|
38 |
+
split_labels.append(label_data[image_length // 3:image_length * 2 // 3, :, :])
|
39 |
+
split_labels.append(label_data[image_length * 2 // 3:, :, :])
|
40 |
+
for i, (im, la) in enumerate(zip(split_images, split_labels)):
|
41 |
+
if np.max(la) != 0:
|
42 |
+
outlier_images.append(im)
|
43 |
+
outlier_labels.append(la)
|
44 |
+
outlier_fname.append(d + '_' + image_name + '_' + str(i))
|
45 |
+
else:
|
46 |
+
normal_images.append(im)
|
47 |
+
normal_labels.append(la)
|
48 |
+
normal_fname.append(d + '_' + image_name + '_' + str(i))
|
49 |
+
|
50 |
+
normal_train, normal_test, normal_name_train, normal_name_test = train_test_split(normal_images, normal_fname, test_size=0.25, random_state=42)
|
51 |
+
|
52 |
+
target_root = '../datasets/SDD_anomaly_detection/SDD'
|
53 |
+
train_root = os.path.join(target_root, 'train/good')
|
54 |
+
if not os.path.exists(train_root):
|
55 |
+
os.makedirs(train_root)
|
56 |
+
for image, name in zip(normal_train, normal_name_train):
|
57 |
+
cv2.imwrite(os.path.join(train_root, name + '.png'), image)
|
58 |
+
|
59 |
+
test_root = os.path.join(target_root, 'test/good')
|
60 |
+
if not os.path.exists(test_root):
|
61 |
+
os.makedirs(test_root)
|
62 |
+
for image, name in zip(normal_test, normal_name_test):
|
63 |
+
cv2.imwrite(os.path.join(test_root, name + '.png'), image)
|
64 |
+
|
65 |
+
defect_root = os.path.join(target_root, 'test/defect')
|
66 |
+
label_root = os.path.join(target_root, 'ground_truth/defect')
|
67 |
+
if not os.path.exists(defect_root):
|
68 |
+
os.makedirs(defect_root)
|
69 |
+
if not os.path.exists(label_root):
|
70 |
+
os.makedirs(label_root)
|
71 |
+
for image, label, name in zip(outlier_images, outlier_labels, outlier_fname):
|
72 |
+
cv2.imwrite(os.path.join(defect_root, name + '.png'), image)
|
73 |
+
cv2.imwrite(os.path.join(label_root, name + '_mask.png'), label)
|
74 |
+
|
75 |
+
print("Done")
|
data_preprocess/sdd.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
SDD_ROOT = os.path.join(DATA_ROOT, 'SDD_anomaly_detection')
|
7 |
+
|
8 |
+
class SDDSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'SDD',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=SDD_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = SDDSolver(root=SDD_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/tn3k.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from config import DATA_ROOT
|
5 |
+
|
6 |
+
TN3K_ROOT = os.path.join(DATA_ROOT, 'TN3K')
|
7 |
+
|
8 |
+
class TN3KSolver(object):
|
9 |
+
CLSNAMES = [
|
10 |
+
'tn3k',
|
11 |
+
]
|
12 |
+
|
13 |
+
def __init__(self, root=TN3K_ROOT, train_ratio=0.5):
|
14 |
+
self.root = root
|
15 |
+
self.meta_path = f'{root}/meta.json'
|
16 |
+
self.train_ratio = train_ratio
|
17 |
+
|
18 |
+
def run(self):
|
19 |
+
self.generate_meta_info()
|
20 |
+
|
21 |
+
def generate_meta_info(self):
|
22 |
+
info = dict(train={}, test={})
|
23 |
+
for cls_name in self.CLSNAMES:
|
24 |
+
cls_dir = f'{self.root}/{cls_name}'
|
25 |
+
for phase in ['train', 'test']:
|
26 |
+
cls_info = []
|
27 |
+
species = os.listdir(f'{cls_dir}/{phase}')
|
28 |
+
for specie in species:
|
29 |
+
is_abnormal = True if specie not in ['good'] else False
|
30 |
+
img_names = os.listdir(f'{cls_dir}/{phase}/{specie}')
|
31 |
+
mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None
|
32 |
+
img_names.sort()
|
33 |
+
mask_names.sort() if mask_names is not None else None
|
34 |
+
for idx, img_name in enumerate(img_names):
|
35 |
+
info_img = dict(
|
36 |
+
img_path=f'{cls_name}/{phase}/{specie}/{img_name}',
|
37 |
+
mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '',
|
38 |
+
cls_name=cls_name,
|
39 |
+
specie_name=specie,
|
40 |
+
anomaly=1 if is_abnormal else 0,
|
41 |
+
)
|
42 |
+
cls_info.append(info_img)
|
43 |
+
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
|
46 |
+
with open(self.meta_path, 'w') as f:
|
47 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = TN3KSolver(root=TN3K_ROOT)
|
52 |
+
runner.run()
|
data_preprocess/visa.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
import random
|
5 |
+
from dataset import VISA_ROOT
|
6 |
+
|
7 |
+
class VisASolver(object):
|
8 |
+
CLSNAMES = [
|
9 |
+
'candle', 'capsules', 'cashew', 'chewinggum', 'fryum',
|
10 |
+
'macaroni1', 'macaroni2', 'pcb1', 'pcb2', 'pcb3',
|
11 |
+
'pcb4', 'pipe_fryum',
|
12 |
+
]
|
13 |
+
|
14 |
+
def __init__(self, root=VISA_ROOT, train_ratio=0.5):
|
15 |
+
self.root = root
|
16 |
+
self.meta_path = f'{root}/meta.json'
|
17 |
+
self.phases = ['train', 'test']
|
18 |
+
self.csv_data = pd.read_csv(f'{root}/split_csv/1cls.csv', header=0)
|
19 |
+
self.train_ratio = train_ratio
|
20 |
+
|
21 |
+
def run(self):
|
22 |
+
self.generate_meta_info()
|
23 |
+
|
24 |
+
def generate_meta_info(self):
|
25 |
+
columns = self.csv_data.columns # [object, split, label, image, mask]
|
26 |
+
info = {phase: {} for phase in self.phases}
|
27 |
+
for cls_name in self.CLSNAMES:
|
28 |
+
cls_data = self.csv_data[self.csv_data[columns[0]] == cls_name]
|
29 |
+
for phase in self.phases:
|
30 |
+
cls_info = []
|
31 |
+
cls_data_phase = cls_data[cls_data[columns[1]] == phase]
|
32 |
+
cls_data_phase.index = list(range(len(cls_data_phase)))
|
33 |
+
for idx in range(cls_data_phase.shape[0]):
|
34 |
+
data = cls_data_phase.loc[idx]
|
35 |
+
is_abnormal = True if data[2] == 'anomaly' else False
|
36 |
+
info_img = dict(
|
37 |
+
img_path=data[3],
|
38 |
+
mask_path=data[4] if is_abnormal else '',
|
39 |
+
cls_name=cls_name,
|
40 |
+
specie_name='',
|
41 |
+
anomaly=1 if is_abnormal else 0,
|
42 |
+
)
|
43 |
+
cls_info.append(info_img)
|
44 |
+
info[phase][cls_name] = cls_info
|
45 |
+
with open(self.meta_path, 'w') as f:
|
46 |
+
f.write(json.dumps(info, indent=4) + "\n")
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == '__main__':
|
51 |
+
runner = VisASolver(root=VISA_ROOT)
|
52 |
+
runner.run()
|
dataset/__init__.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .mvtec import MVTEC_CLS_NAMES, MVTecDataset, MVTEC_ROOT
|
2 |
+
from .visa import VISA_CLS_NAMES, VisaDataset, VISA_ROOT
|
3 |
+
from .mpdd import MPDD_CLS_NAMES, MPDDDataset, MPDD_ROOT
|
4 |
+
from .btad import BTAD_CLS_NAMES, BTADDataset, BTAD_ROOT
|
5 |
+
from .sdd import SDD_CLS_NAMES, SDDDataset, SDD_ROOT
|
6 |
+
from .dagm import DAGM_CLS_NAMES, DAGMDataset, DAGM_ROOT
|
7 |
+
from .dtd import DTD_CLS_NAMES,DTDDataset,DTD_ROOT
|
8 |
+
from .isic import ISIC_CLS_NAMES,ISICDataset,ISIC_ROOT
|
9 |
+
from .colondb import ColonDB_CLS_NAMES, ColonDBDataset, ColonDB_ROOT
|
10 |
+
from .clinicdb import ClinicDB_CLS_NAMES, ClinicDBDataset, ClinicDB_ROOT
|
11 |
+
from .tn3k import TN3K_CLS_NAMES, TN3KDataset, TN3K_ROOT
|
12 |
+
from .headct import HEADCT_CLS_NAMES,HEADCTDataset,HEADCT_ROOT
|
13 |
+
from .brain_mri import BrainMRI_CLS_NAMES,BrainMRIDataset,BrainMRI_ROOT
|
14 |
+
from .br35h import Br35h_CLS_NAMES,Br35hDataset,Br35h_ROOT
|
15 |
+
from torch.utils.data import ConcatDataset
|
16 |
+
|
17 |
+
dataset_dict = {
|
18 |
+
'br35h': (Br35h_CLS_NAMES, Br35hDataset, Br35h_ROOT),
|
19 |
+
'brain_mri': (BrainMRI_CLS_NAMES, BrainMRIDataset, BrainMRI_ROOT),
|
20 |
+
'btad': (BTAD_CLS_NAMES, BTADDataset, BTAD_ROOT),
|
21 |
+
'clinicdb': (ClinicDB_CLS_NAMES, ClinicDBDataset, ClinicDB_ROOT),
|
22 |
+
'colondb': (ColonDB_CLS_NAMES, ColonDBDataset, ColonDB_ROOT),
|
23 |
+
'dagm': (DAGM_CLS_NAMES, DAGMDataset, DAGM_ROOT),
|
24 |
+
'dtd': (DTD_CLS_NAMES, DTDDataset, DTD_ROOT),
|
25 |
+
'headct': (HEADCT_CLS_NAMES, HEADCTDataset, HEADCT_ROOT),
|
26 |
+
'isic': (ISIC_CLS_NAMES, ISICDataset, ISIC_ROOT),
|
27 |
+
'mpdd': (MPDD_CLS_NAMES, MPDDDataset, MPDD_ROOT),
|
28 |
+
'mvtec': (MVTEC_CLS_NAMES, MVTecDataset, MVTEC_ROOT),
|
29 |
+
'sdd': (SDD_CLS_NAMES, SDDDataset, SDD_ROOT),
|
30 |
+
'tn3k': (TN3K_CLS_NAMES, TN3KDataset, TN3K_ROOT),
|
31 |
+
'visa': (VISA_CLS_NAMES, VisaDataset, VISA_ROOT),
|
32 |
+
}
|
33 |
+
|
34 |
+
def get_data(dataset_type_list, transform, target_transform, training):
|
35 |
+
if not isinstance(dataset_type_list, list):
|
36 |
+
dataset_type_list = [dataset_type_list]
|
37 |
+
|
38 |
+
dataset_cls_names_list = []
|
39 |
+
dataset_instance_list = []
|
40 |
+
dataset_root_list = []
|
41 |
+
for dataset_type in dataset_type_list:
|
42 |
+
if dataset_dict.get(dataset_type, ''):
|
43 |
+
dataset_cls_names, dataset_instance, dataset_root = dataset_dict[dataset_type]
|
44 |
+
dataset_instance = dataset_instance(
|
45 |
+
clsnames=dataset_cls_names,
|
46 |
+
transform=transform,
|
47 |
+
target_transform=target_transform,
|
48 |
+
training=training
|
49 |
+
)
|
50 |
+
|
51 |
+
dataset_cls_names_list.append(dataset_cls_names)
|
52 |
+
dataset_instance_list.append(dataset_instance)
|
53 |
+
dataset_root_list.append(dataset_root)
|
54 |
+
|
55 |
+
else:
|
56 |
+
print(f'Only support {list(dataset_dict.keys())}, but entered {dataset_type}...')
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
if len(dataset_type_list) > 1:
|
60 |
+
dataset_instance = ConcatDataset(dataset_instance_list)
|
61 |
+
dataset_cls_names = dataset_cls_names_list
|
62 |
+
dataset_root = dataset_root_list
|
63 |
+
else:
|
64 |
+
dataset_instance = dataset_instance_list[0]
|
65 |
+
dataset_cls_names = dataset_cls_names_list[0]
|
66 |
+
dataset_root = dataset_root_list[0]
|
67 |
+
|
68 |
+
return dataset_cls_names, dataset_instance, dataset_root
|
dataset/base_dataset.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Base class for our zero-shot anomaly detection dataset
|
3 |
+
"""
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import numpy as np
|
8 |
+
import torch.utils.data as data
|
9 |
+
from PIL import Image
|
10 |
+
import cv2
|
11 |
+
from config import DATA_ROOT
|
12 |
+
|
13 |
+
|
14 |
+
class DataSolver:
|
15 |
+
def __init__(self, root, clsnames):
|
16 |
+
self.root = root
|
17 |
+
self.clsnames = clsnames
|
18 |
+
self.path = os.path.join(root, 'meta.json')
|
19 |
+
|
20 |
+
def run(self):
|
21 |
+
with open(self.path, 'r') as f:
|
22 |
+
info = json.load(f)
|
23 |
+
|
24 |
+
info_required = dict(train={}, test={})
|
25 |
+
for cls in self.clsnames:
|
26 |
+
for k in info.keys():
|
27 |
+
info_required[k][cls] = info[k][cls]
|
28 |
+
|
29 |
+
return info_required
|
30 |
+
|
31 |
+
|
32 |
+
class BaseDataset(data.Dataset):
|
33 |
+
def __init__(self, clsnames, transform, target_transform, root, aug_rate=0., training=True):
|
34 |
+
self.root = root
|
35 |
+
self.transform = transform
|
36 |
+
self.target_transform = target_transform
|
37 |
+
self.aug_rate = aug_rate
|
38 |
+
self.training = training
|
39 |
+
self.data_all = []
|
40 |
+
self.cls_names = clsnames
|
41 |
+
|
42 |
+
solver = DataSolver(root, clsnames)
|
43 |
+
meta_info = solver.run()
|
44 |
+
|
45 |
+
self.meta_info = meta_info['test'] # Only utilize the test dataset for both training and testing
|
46 |
+
for cls_name in self.cls_names:
|
47 |
+
self.data_all.extend(self.meta_info[cls_name])
|
48 |
+
|
49 |
+
self.length = len(self.data_all)
|
50 |
+
|
51 |
+
def __len__(self):
|
52 |
+
return self.length
|
53 |
+
|
54 |
+
def combine_img(self, cls_name):
|
55 |
+
"""
|
56 |
+
From April-GAN: https://github.com/ByChelsea/VAND-APRIL-GAN
|
57 |
+
Here we combine four images into a single image for data augmentation.
|
58 |
+
"""
|
59 |
+
img_info = random.sample(self.meta_info[cls_name], 4)
|
60 |
+
|
61 |
+
img_ls = []
|
62 |
+
mask_ls = []
|
63 |
+
|
64 |
+
for data in img_info:
|
65 |
+
img_path = os.path.join(self.root, data['img_path'])
|
66 |
+
mask_path = os.path.join(self.root, data['mask_path'])
|
67 |
+
|
68 |
+
img = Image.open(img_path).convert('RGB')
|
69 |
+
img_ls.append(img)
|
70 |
+
|
71 |
+
if not data['anomaly']:
|
72 |
+
img_mask = Image.fromarray(np.zeros((img.size[0], img.size[1])), mode='L')
|
73 |
+
else:
|
74 |
+
img_mask = np.array(Image.open(mask_path).convert('L')) > 0
|
75 |
+
img_mask = Image.fromarray(img_mask.astype(np.uint8) * 255, mode='L')
|
76 |
+
|
77 |
+
mask_ls.append(img_mask)
|
78 |
+
|
79 |
+
# Image
|
80 |
+
image_width, image_height = img_ls[0].size
|
81 |
+
result_image = Image.new("RGB", (2 * image_width, 2 * image_height))
|
82 |
+
for i, img in enumerate(img_ls):
|
83 |
+
row = i // 2
|
84 |
+
col = i % 2
|
85 |
+
x = col * image_width
|
86 |
+
y = row * image_height
|
87 |
+
result_image.paste(img, (x, y))
|
88 |
+
|
89 |
+
# Mask
|
90 |
+
result_mask = Image.new("L", (2 * image_width, 2 * image_height))
|
91 |
+
for i, img in enumerate(mask_ls):
|
92 |
+
row = i // 2
|
93 |
+
col = i % 2
|
94 |
+
x = col * image_width
|
95 |
+
y = row * image_height
|
96 |
+
result_mask.paste(img, (x, y))
|
97 |
+
|
98 |
+
return result_image, result_mask
|
99 |
+
|
100 |
+
def __getitem__(self, index):
|
101 |
+
data = self.data_all[index]
|
102 |
+
img_path = os.path.join(self.root, data['img_path'])
|
103 |
+
mask_path = os.path.join(self.root, data['mask_path'])
|
104 |
+
cls_name = data['cls_name']
|
105 |
+
anomaly = data['anomaly']
|
106 |
+
random_number = random.random()
|
107 |
+
|
108 |
+
if self.training and random_number < self.aug_rate:
|
109 |
+
img, img_mask = self.combine_img(cls_name)
|
110 |
+
else:
|
111 |
+
if img_path.endswith('.tif'):
|
112 |
+
img = cv2.imread(img_path)
|
113 |
+
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
114 |
+
else:
|
115 |
+
img = Image.open(img_path).convert('RGB')
|
116 |
+
if anomaly == 0:
|
117 |
+
img_mask = Image.fromarray(np.zeros((img.size[0], img.size[1])), mode='L')
|
118 |
+
else:
|
119 |
+
if data['mask_path']:
|
120 |
+
img_mask = np.array(Image.open(mask_path).convert('L')) > 0
|
121 |
+
img_mask = Image.fromarray(img_mask.astype(np.uint8) * 255, mode='L')
|
122 |
+
else:
|
123 |
+
img_mask = Image.fromarray(np.zeros((img.size[0], img.size[1])), mode='L')
|
124 |
+
# Transforms
|
125 |
+
if self.transform is not None:
|
126 |
+
img = self.transform(img)
|
127 |
+
if self.target_transform is not None and img_mask is not None:
|
128 |
+
img_mask = self.target_transform(img_mask)
|
129 |
+
if img_mask is None:
|
130 |
+
img_mask = []
|
131 |
+
|
132 |
+
return {
|
133 |
+
'img': img,
|
134 |
+
'img_mask': img_mask,
|
135 |
+
'cls_name': cls_name,
|
136 |
+
'anomaly': anomaly,
|
137 |
+
'img_path': img_path
|
138 |
+
}
|
dataset/br35h.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection'''
|
6 |
+
|
7 |
+
Br35h_CLS_NAMES = [
|
8 |
+
'br35h',
|
9 |
+
]
|
10 |
+
Br35h_ROOT = os.path.join(DATA_ROOT, 'Br35h_anomaly_detection')
|
11 |
+
|
12 |
+
class Br35hDataset(BaseDataset):
|
13 |
+
def __init__(self, transform, target_transform, clsnames=Br35h_CLS_NAMES, aug_rate=0.0, root=Br35h_ROOT, training=True):
|
14 |
+
super(Br35hDataset, self).__init__(
|
15 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
16 |
+
root=root, aug_rate=aug_rate, training=training
|
17 |
+
)
|
18 |
+
|
dataset/brain_mri.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection'''
|
6 |
+
BrainMRI_CLS_NAMES = [
|
7 |
+
'brain_mri',
|
8 |
+
]
|
9 |
+
BrainMRI_ROOT = os.path.join(DATA_ROOT, 'BrainMRI')
|
10 |
+
|
11 |
+
class BrainMRIDataset(BaseDataset):
|
12 |
+
def __init__(self, transform, target_transform, clsnames=BrainMRI_CLS_NAMES, aug_rate=0.0, root=BrainMRI_ROOT, training=True):
|
13 |
+
super(BrainMRIDataset, self).__init__(
|
14 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
15 |
+
root=root, aug_rate=aug_rate, training=training
|
16 |
+
)
|
dataset/btad.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://avires.dimi.uniud.it/papers/btad/btad.zip'''
|
6 |
+
BTAD_CLS_NAMES = [
|
7 |
+
'01', '02', '03',
|
8 |
+
]
|
9 |
+
BTAD_ROOT = os.path.join(DATA_ROOT, 'BTech_Dataset_transformed')
|
10 |
+
|
11 |
+
class BTADDataset(BaseDataset):
|
12 |
+
def __init__(self, transform, target_transform, clsnames=BTAD_CLS_NAMES, aug_rate=0.0, root=BTAD_ROOT, training=True):
|
13 |
+
super(BTADDataset, self).__init__(
|
14 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
15 |
+
root=root, aug_rate=aug_rate, training=training
|
16 |
+
)
|
dataset/clinicdb.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://paperswithcode.com/dataset/cvc-clinicdb'''
|
6 |
+
ClinicDB_CLS_NAMES = [
|
7 |
+
'ClinicDB',
|
8 |
+
]
|
9 |
+
ClinicDB_ROOT = os.path.join(DATA_ROOT, 'CVC-ClinicDB')
|
10 |
+
|
11 |
+
class ClinicDBDataset(BaseDataset):
|
12 |
+
def __init__(self, transform, target_transform, clsnames=ClinicDB_CLS_NAMES, aug_rate=0.0, root=ClinicDB_ROOT, training=True):
|
13 |
+
super(ClinicDBDataset, self).__init__(
|
14 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
15 |
+
root=root, aug_rate=aug_rate, training=training
|
16 |
+
)
|
dataset/colondb.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: http://mv.cvc.uab.es/projects/colon-qa/cvccolondb'''
|
6 |
+
ColonDB_CLS_NAMES = [
|
7 |
+
'ColonDB',
|
8 |
+
]
|
9 |
+
ColonDB_ROOT = os.path.join(DATA_ROOT, 'CVC-ColonDB')
|
10 |
+
|
11 |
+
class ColonDBDataset(BaseDataset):
|
12 |
+
def __init__(self, transform, target_transform, clsnames=ColonDB_CLS_NAMES, aug_rate=0.0, root=ColonDB_ROOT, training=True):
|
13 |
+
super(ColonDBDataset, self).__init__(
|
14 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
15 |
+
root=root, aug_rate=aug_rate, training=training
|
16 |
+
)
|
17 |
+
|
18 |
+
|
dataset/dagm.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection'''
|
6 |
+
DAGM_CLS_NAMES = [
|
7 |
+
'Class1', 'Class2', 'Class3', 'Class4', 'Class5','Class6','Class7','Class8','Class9','Class10',
|
8 |
+
]
|
9 |
+
DAGM_ROOT = os.path.join(DATA_ROOT, 'DAGM_anomaly_detection')
|
10 |
+
|
11 |
+
class DAGMDataset(BaseDataset):
|
12 |
+
def __init__(self, transform, target_transform, clsnames=DAGM_CLS_NAMES, aug_rate=0.0, root=DAGM_ROOT, training=True):
|
13 |
+
super(DAGMDataset, self).__init__(
|
14 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
15 |
+
root=root, aug_rate=aug_rate, training=training
|
16 |
+
)
|
dataset/dtd.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://drive.google.com/drive/folders/10OyPzvI3H6llCZBxKxFlKWt1Pw1tkMK1'''
|
6 |
+
DTD_CLS_NAMES = [
|
7 |
+
'Blotchy_099', 'Fibrous_183', 'Marbled_078', 'Matted_069', 'Mesh_114','Perforated_037','Stratified_154','Woven_001','Woven_068','Woven_104','Woven_125','Woven_127',
|
8 |
+
]
|
9 |
+
DTD_ROOT = os.path.join(DATA_ROOT, 'DTD-Synthetic')
|
10 |
+
|
11 |
+
class DTDDataset(BaseDataset):
|
12 |
+
def __init__(self, transform, target_transform, clsnames=DTD_CLS_NAMES, aug_rate=0.0, root=DTD_ROOT, training=True):
|
13 |
+
super(DTDDataset, self).__init__(
|
14 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
15 |
+
root=root, aug_rate=aug_rate, training=training
|
16 |
+
)
|
dataset/headct.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://www.kaggle.com/datasets/felipekitamura/head-ct-hemorrhage'''
|
6 |
+
HEADCT_CLS_NAMES = [
|
7 |
+
'headct',
|
8 |
+
]
|
9 |
+
HEADCT_ROOT = os.path.join(DATA_ROOT, 'HeadCT_anomaly_detection')
|
10 |
+
|
11 |
+
class HEADCTDataset(BaseDataset):
|
12 |
+
def __init__(self, transform, target_transform, clsnames=HEADCT_CLS_NAMES, aug_rate=0.0, root=HEADCT_ROOT, training=True):
|
13 |
+
super(HEADCTDataset, self).__init__(
|
14 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
15 |
+
root=root, aug_rate=aug_rate, training=training
|
16 |
+
)
|
17 |
+
|
18 |
+
|
dataset/isic.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://challenge.isic-archive.com/data/'''
|
6 |
+
ISIC_CLS_NAMES = [
|
7 |
+
'isic',
|
8 |
+
]
|
9 |
+
ISIC_ROOT = os.path.join(DATA_ROOT, 'ISIC')
|
10 |
+
|
11 |
+
class ISICDataset(BaseDataset):
|
12 |
+
def __init__(self, transform, target_transform, clsnames=ISIC_CLS_NAMES, aug_rate=0.0, root=ISIC_ROOT, training=True):
|
13 |
+
super(ISICDataset, self).__init__(
|
14 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
15 |
+
root=root, aug_rate=aug_rate, training=training
|
16 |
+
)
|
17 |
+
|
18 |
+
|
dataset/mpdd.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://github.com/stepanje/MPDD'''
|
6 |
+
MPDD_CLS_NAMES = [
|
7 |
+
'bracket_black', 'bracket_brown', 'bracket_white', 'connector', 'metal_plate','tubes',
|
8 |
+
]
|
9 |
+
MPDD_ROOT = os.path.join(DATA_ROOT, 'MPDD')
|
10 |
+
|
11 |
+
class MPDDDataset(BaseDataset):
|
12 |
+
def __init__(self, transform, target_transform, clsnames=MPDD_CLS_NAMES, aug_rate=0.0, root=MPDD_ROOT, training=True):
|
13 |
+
super(MPDDDataset, self).__init__(
|
14 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
15 |
+
root=root, aug_rate=aug_rate, training=training
|
16 |
+
)
|
17 |
+
|
dataset/mvtec.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://paperswithcode.com/dataset/mvtecad'''
|
6 |
+
|
7 |
+
MVTEC_CLS_NAMES = [
|
8 |
+
'bottle', 'cable', 'capsule', 'carpet', 'grid',
|
9 |
+
'hazelnut', 'leather', 'metal_nut', 'pill', 'screw',
|
10 |
+
'tile', 'toothbrush', 'transistor', 'wood', 'zipper',
|
11 |
+
]
|
12 |
+
MVTEC_ROOT = os.path.join(DATA_ROOT, 'mvtec_anomaly_detection')
|
13 |
+
|
14 |
+
class MVTecDataset(BaseDataset):
|
15 |
+
def __init__(self, transform, target_transform, clsnames=MVTEC_CLS_NAMES, aug_rate=0.2, root=MVTEC_ROOT, training=True):
|
16 |
+
super(MVTecDataset, self).__init__(
|
17 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
18 |
+
root=root, aug_rate=aug_rate, training=training
|
19 |
+
)
|
dataset/sdd.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://data.vicos.si/datasets/KSDD/KolektorSDD.zip'''
|
6 |
+
SDD_CLS_NAMES = [
|
7 |
+
'SDD',
|
8 |
+
]
|
9 |
+
SDD_ROOT = os.path.join(DATA_ROOT, 'SDD_anomaly_detection')
|
10 |
+
|
11 |
+
|
12 |
+
class SDDDataset(BaseDataset):
|
13 |
+
def __init__(self, transform, target_transform, clsnames=SDD_CLS_NAMES, aug_rate=0.0, root=SDD_ROOT, training=True):
|
14 |
+
super(SDDDataset, self).__init__(
|
15 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
16 |
+
root=root, aug_rate=aug_rate, training=training
|
17 |
+
)
|
18 |
+
|
dataset/tn3k.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://ieeexplore.ieee.org/document/9434087/references#references'''
|
6 |
+
TN3K_CLS_NAMES = [
|
7 |
+
'tn3k',
|
8 |
+
]
|
9 |
+
TN3K_ROOT = os.path.join(DATA_ROOT, 'TN3K')
|
10 |
+
|
11 |
+
class TN3KDataset(BaseDataset):
|
12 |
+
def __init__(self, transform, target_transform, clsnames=TN3K_CLS_NAMES, aug_rate=0.0, root=TN3K_ROOT, training=True):
|
13 |
+
super(TN3KDataset, self).__init__(
|
14 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
15 |
+
root=root, aug_rate=aug_rate, training=training
|
16 |
+
)
|
17 |
+
|
18 |
+
|
dataset/visa.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .base_dataset import BaseDataset
|
3 |
+
from config import DATA_ROOT
|
4 |
+
|
5 |
+
'''dataset source: https://amazon-visual-anomaly.s3.us-west-2.amazonaws.com/VisA_20220922.tar'''
|
6 |
+
VISA_CLS_NAMES = [
|
7 |
+
'candle', 'capsules', 'cashew', 'chewinggum', 'fryum',
|
8 |
+
'macaroni1', 'macaroni2', 'pcb1', 'pcb2', 'pcb3',
|
9 |
+
'pcb4', 'pipe_fryum',
|
10 |
+
]
|
11 |
+
|
12 |
+
VISA_ROOT = os.path.join(DATA_ROOT, 'VisA_20220922')
|
13 |
+
|
14 |
+
class VisaDataset(BaseDataset):
|
15 |
+
def __init__(self, transform, target_transform, clsnames=VISA_CLS_NAMES, aug_rate=0.0, root=VISA_ROOT, training=True):
|
16 |
+
super(VisaDataset, self).__init__(
|
17 |
+
clsnames=clsnames, transform=transform, target_transform=target_transform,
|
18 |
+
root=root, aug_rate=aug_rate, training=training
|
19 |
+
)
|
20 |
+
|
datasets/rayan_dataset.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------
|
2 |
+
# Do Not Alter This File!
|
3 |
+
# -----------------------------------------------------------------------------
|
4 |
+
# The following code is part of the logic used for loading and evaluating your
|
5 |
+
# output scores. Please DO NOT modify this section, as upon your submission,
|
6 |
+
# the whole evaluation logic will be overwritten by the original code.
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# If you'd like to make modifications, you can create a completely new Dataset
|
9 |
+
# class or a child class that inherits from this one and use that with your
|
10 |
+
# data loader.
|
11 |
+
# -----------------------------------------------------------------------------
|
12 |
+
|
13 |
+
import os
|
14 |
+
from enum import Enum
|
15 |
+
|
16 |
+
import PIL
|
17 |
+
import torch
|
18 |
+
from torchvision import transforms
|
19 |
+
|
20 |
+
IMAGENET_MEAN = [0.485, 0.456, 0.406]
|
21 |
+
IMAGENET_STD = [0.229, 0.224, 0.225]
|
22 |
+
|
23 |
+
|
24 |
+
class DatasetSplit(Enum):
|
25 |
+
TRAIN = "train"
|
26 |
+
VAL = "val"
|
27 |
+
TEST = "test"
|
28 |
+
|
29 |
+
|
30 |
+
class RayanDataset(torch.utils.data.Dataset):
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
source,
|
34 |
+
classname,
|
35 |
+
input_size=518,
|
36 |
+
output_size=224,
|
37 |
+
split=DatasetSplit.TEST,
|
38 |
+
external_transform=None,
|
39 |
+
**kwargs,
|
40 |
+
):
|
41 |
+
super().__init__()
|
42 |
+
self.source = source
|
43 |
+
self.split = split
|
44 |
+
self.classnames_to_use = [classname]
|
45 |
+
self.imgpaths_per_class, self.data_to_iterate = self.get_image_data()
|
46 |
+
|
47 |
+
if external_transform is None:
|
48 |
+
self.transform_img = [
|
49 |
+
transforms.Resize((input_size, input_size)),
|
50 |
+
transforms.CenterCrop(input_size),
|
51 |
+
transforms.ToTensor(),
|
52 |
+
transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD),
|
53 |
+
]
|
54 |
+
self.transform_img = transforms.Compose(self.transform_img)
|
55 |
+
else:
|
56 |
+
self.transform_img = external_transform
|
57 |
+
|
58 |
+
# Output size of the mask has to be of shape: 1×224×224
|
59 |
+
self.transform_mask = [
|
60 |
+
transforms.Resize((output_size, output_size)),
|
61 |
+
transforms.CenterCrop(output_size),
|
62 |
+
transforms.ToTensor(),
|
63 |
+
]
|
64 |
+
self.transform_mask = transforms.Compose(self.transform_mask)
|
65 |
+
self.output_shape = (1, output_size, output_size)
|
66 |
+
|
67 |
+
def __getitem__(self, idx):
|
68 |
+
classname, anomaly, image_path, mask_path = self.data_to_iterate[idx]
|
69 |
+
image = PIL.Image.open(image_path).convert("RGB")
|
70 |
+
image = self.transform_img(image)
|
71 |
+
|
72 |
+
if self.split == DatasetSplit.TEST and mask_path is not None:
|
73 |
+
mask = PIL.Image.open(mask_path).convert("L")
|
74 |
+
mask = self.transform_mask(mask) > 0
|
75 |
+
else:
|
76 |
+
mask = torch.zeros([*self.output_shape])
|
77 |
+
|
78 |
+
return {
|
79 |
+
"image": image,
|
80 |
+
"mask": mask,
|
81 |
+
"is_anomaly": int(anomaly != "good"),
|
82 |
+
"image_path": image_path,
|
83 |
+
}
|
84 |
+
|
85 |
+
def __len__(self):
|
86 |
+
return len(self.data_to_iterate)
|
87 |
+
|
88 |
+
def get_image_data(self):
|
89 |
+
imgpaths_per_class = {}
|
90 |
+
maskpaths_per_class = {}
|
91 |
+
|
92 |
+
for classname in self.classnames_to_use:
|
93 |
+
classpath = os.path.join(self.source, classname, self.split.value)
|
94 |
+
maskpath = os.path.join(self.source, classname, "ground_truth")
|
95 |
+
anomaly_types = os.listdir(classpath)
|
96 |
+
|
97 |
+
imgpaths_per_class[classname] = {}
|
98 |
+
maskpaths_per_class[classname] = {}
|
99 |
+
|
100 |
+
for anomaly in anomaly_types:
|
101 |
+
anomaly_path = os.path.join(classpath, anomaly)
|
102 |
+
anomaly_files = sorted(os.listdir(anomaly_path))
|
103 |
+
imgpaths_per_class[classname][anomaly] = [
|
104 |
+
os.path.join(anomaly_path, x) for x in anomaly_files
|
105 |
+
]
|
106 |
+
|
107 |
+
if self.split == DatasetSplit.TEST and anomaly != "good":
|
108 |
+
anomaly_mask_path = os.path.join(maskpath, anomaly)
|
109 |
+
anomaly_mask_files = sorted(os.listdir(anomaly_mask_path))
|
110 |
+
maskpaths_per_class[classname][anomaly] = [
|
111 |
+
os.path.join(anomaly_mask_path, x) for x in anomaly_mask_files
|
112 |
+
]
|
113 |
+
else:
|
114 |
+
maskpaths_per_class[classname]["good"] = None
|
115 |
+
|
116 |
+
data_to_iterate = []
|
117 |
+
for classname in sorted(imgpaths_per_class.keys()):
|
118 |
+
for anomaly in sorted(imgpaths_per_class[classname].keys()):
|
119 |
+
for i, image_path in enumerate(imgpaths_per_class[classname][anomaly]):
|
120 |
+
data_tuple = [classname, anomaly, image_path]
|
121 |
+
if self.split == DatasetSplit.TEST and anomaly != "good":
|
122 |
+
data_tuple.append(maskpaths_per_class[classname][anomaly][i])
|
123 |
+
else:
|
124 |
+
data_tuple.append(None)
|
125 |
+
data_to_iterate.append(data_tuple)
|
126 |
+
|
127 |
+
return imgpaths_per_class, data_to_iterate
|
docker-compose.yml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------
|
2 |
+
# A sample Docker Compose file to help you replicate our test environment
|
3 |
+
# -----------------------------------------------------------------------------
|
4 |
+
|
5 |
+
services:
|
6 |
+
zsad-service:
|
7 |
+
image: zsad-image:1
|
8 |
+
build:
|
9 |
+
context: .
|
10 |
+
container_name: zsad-container
|
11 |
+
volumes:
|
12 |
+
- ./shared_folder:/app/output
|
13 |
+
deploy:
|
14 |
+
resources:
|
15 |
+
reservations:
|
16 |
+
devices:
|
17 |
+
- driver: nvidia
|
18 |
+
count: all
|
19 |
+
capabilities: [gpu]
|
20 |
+
|
21 |
+
command: [ "python3", "runner.py" ]
|
evaluation/base_eval.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------
|
2 |
+
# Do Not Alter This File!
|
3 |
+
# -----------------------------------------------------------------------------
|
4 |
+
# The following code is part of the logic used for loading and evaluating your
|
5 |
+
# output scores. Please DO NOT modify this section, as upon your submission,
|
6 |
+
# the whole evaluation logic will be overwritten by the original code.
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
|
9 |
+
import warnings
|
10 |
+
import os
|
11 |
+
from pathlib import Path
|
12 |
+
import csv
|
13 |
+
import json
|
14 |
+
import torch
|
15 |
+
|
16 |
+
import datasets.rayan_dataset as rayan_dataset
|
17 |
+
from evaluation.utils.metrics import compute_metrics
|
18 |
+
|
19 |
+
warnings.filterwarnings("ignore")
|
20 |
+
|
21 |
+
|
22 |
+
class BaseEval:
|
23 |
+
def __init__(self, cfg):
|
24 |
+
self.cfg = cfg
|
25 |
+
self.device = torch.device(
|
26 |
+
"cuda:{}".format(cfg["device"]) if torch.cuda.is_available() else "cpu"
|
27 |
+
)
|
28 |
+
|
29 |
+
self.path = cfg["datasets"]["data_path"]
|
30 |
+
self.dataset = cfg["datasets"]["dataset_name"]
|
31 |
+
self.save_csv = cfg["testing"]["save_csv"]
|
32 |
+
self.save_json = cfg["testing"]["save_json"]
|
33 |
+
self.categories = cfg["datasets"]["class_name"]
|
34 |
+
if isinstance(self.categories, str):
|
35 |
+
if self.categories.lower() == "all":
|
36 |
+
if self.dataset == "rayan_dataset":
|
37 |
+
self.categories = self.get_available_class_names(self.path)
|
38 |
+
else:
|
39 |
+
self.categories = [self.categories]
|
40 |
+
self.output_dir = cfg["testing"]["output_dir"]
|
41 |
+
os.makedirs(self.output_dir, exist_ok=True)
|
42 |
+
self.scores_dir = cfg["testing"]["output_scores_dir"]
|
43 |
+
self.class_name_mapping_dir = cfg["testing"]["class_name_mapping_dir"]
|
44 |
+
|
45 |
+
self.leaderboard_metric_weights = {
|
46 |
+
"image_auroc": 1.2,
|
47 |
+
"image_ap": 1.1,
|
48 |
+
"image_f1": 1.1,
|
49 |
+
"pixel_auroc": 1.0,
|
50 |
+
"pixel_aupro": 1.4,
|
51 |
+
"pixel_ap": 1.3,
|
52 |
+
"pixel_f1": 1.3,
|
53 |
+
}
|
54 |
+
|
55 |
+
def get_available_class_names(self, root_data_path):
|
56 |
+
all_items = os.listdir(root_data_path)
|
57 |
+
folder_names = [
|
58 |
+
item
|
59 |
+
for item in all_items
|
60 |
+
if os.path.isdir(os.path.join(root_data_path, item))
|
61 |
+
]
|
62 |
+
|
63 |
+
return folder_names
|
64 |
+
|
65 |
+
def load_datasets(self, category):
|
66 |
+
dataset_classes = {
|
67 |
+
"rayan_dataset": rayan_dataset.RayanDataset,
|
68 |
+
}
|
69 |
+
|
70 |
+
dataset_splits = {
|
71 |
+
"rayan_dataset": rayan_dataset.DatasetSplit.TEST,
|
72 |
+
}
|
73 |
+
|
74 |
+
test_dataset = dataset_classes[self.dataset](
|
75 |
+
source=self.path,
|
76 |
+
split=dataset_splits[self.dataset],
|
77 |
+
classname=category,
|
78 |
+
)
|
79 |
+
return test_dataset
|
80 |
+
|
81 |
+
def get_category_metrics(self, category):
|
82 |
+
print(f"Loading scores of '{category}'")
|
83 |
+
gt_sp, pr_sp, gt_px, pr_px, _ = self.load_category_scores(category)
|
84 |
+
|
85 |
+
print(f"Computing metrics for '{category}'")
|
86 |
+
image_metric, pixel_metric = compute_metrics(gt_sp, pr_sp, gt_px, pr_px)
|
87 |
+
|
88 |
+
return image_metric, pixel_metric
|
89 |
+
|
90 |
+
def load_category_scores(self, category):
|
91 |
+
raise NotImplementedError()
|
92 |
+
|
93 |
+
def get_scores_path_for_image(self, image_path):
|
94 |
+
"""example image_path: './data/photovoltaic_module/test/good/037.png'"""
|
95 |
+
path = Path(image_path)
|
96 |
+
|
97 |
+
category, split, anomaly_type = path.parts[-4:-1]
|
98 |
+
image_name = path.stem
|
99 |
+
|
100 |
+
return os.path.join(
|
101 |
+
self.scores_dir, category, split, anomaly_type, f"{image_name}_scores.json"
|
102 |
+
)
|
103 |
+
|
104 |
+
def calc_leaderboard_score(self, **metrics):
|
105 |
+
weighted_sum = 0
|
106 |
+
total_weight = 0
|
107 |
+
for key, weight in self.leaderboard_metric_weights.items():
|
108 |
+
metric = metrics.get(key)
|
109 |
+
weighted_sum += metric * weight
|
110 |
+
total_weight += weight
|
111 |
+
|
112 |
+
if total_weight == 0:
|
113 |
+
return 0
|
114 |
+
|
115 |
+
return weighted_sum / total_weight
|
116 |
+
|
117 |
+
def main(self):
|
118 |
+
image_auroc_list = []
|
119 |
+
image_f1_list = []
|
120 |
+
image_ap_list = []
|
121 |
+
pixel_auroc_list = []
|
122 |
+
pixel_f1_list = []
|
123 |
+
pixel_ap_list = []
|
124 |
+
pixel_aupro_list = []
|
125 |
+
leaderboard_score_list = []
|
126 |
+
for category in self.categories:
|
127 |
+
image_metric, pixel_metric = self.get_category_metrics(
|
128 |
+
category=category,
|
129 |
+
)
|
130 |
+
image_auroc, image_f1, image_ap = image_metric
|
131 |
+
pixel_auroc, pixel_f1, pixel_ap, pixel_aupro = pixel_metric
|
132 |
+
leaderboard_score = self.calc_leaderboard_score(
|
133 |
+
image_auroc=image_auroc,
|
134 |
+
image_f1=image_f1,
|
135 |
+
image_ap=image_ap,
|
136 |
+
pixel_auroc=pixel_auroc,
|
137 |
+
pixel_aupro=pixel_aupro,
|
138 |
+
pixel_f1=pixel_f1,
|
139 |
+
pixel_ap=pixel_ap,
|
140 |
+
)
|
141 |
+
|
142 |
+
image_auroc_list.append(image_auroc)
|
143 |
+
image_f1_list.append(image_f1)
|
144 |
+
image_ap_list.append(image_ap)
|
145 |
+
pixel_auroc_list.append(pixel_auroc)
|
146 |
+
pixel_f1_list.append(pixel_f1)
|
147 |
+
pixel_ap_list.append(pixel_ap)
|
148 |
+
pixel_aupro_list.append(pixel_aupro)
|
149 |
+
leaderboard_score_list.append(leaderboard_score)
|
150 |
+
|
151 |
+
print(category)
|
152 |
+
print(
|
153 |
+
"[image level] auroc:{}, f1:{}, ap:{}".format(
|
154 |
+
image_auroc * 100,
|
155 |
+
image_f1 * 100,
|
156 |
+
image_ap * 100,
|
157 |
+
)
|
158 |
+
)
|
159 |
+
print(
|
160 |
+
"[pixel level] auroc:{}, f1:{}, ap:{}, aupro:{}".format(
|
161 |
+
pixel_auroc * 100,
|
162 |
+
pixel_f1 * 100,
|
163 |
+
pixel_ap * 100,
|
164 |
+
pixel_aupro * 100,
|
165 |
+
)
|
166 |
+
)
|
167 |
+
print(
|
168 |
+
"leaderboard score:{}".format(
|
169 |
+
leaderboard_score * 100,
|
170 |
+
)
|
171 |
+
)
|
172 |
+
|
173 |
+
image_auroc_mean = sum(image_auroc_list) / len(image_auroc_list)
|
174 |
+
image_f1_mean = sum(image_f1_list) / len(image_f1_list)
|
175 |
+
image_ap_mean = sum(image_ap_list) / len(image_ap_list)
|
176 |
+
pixel_auroc_mean = sum(pixel_auroc_list) / len(pixel_auroc_list)
|
177 |
+
pixel_f1_mean = sum(pixel_f1_list) / len(pixel_f1_list)
|
178 |
+
pixel_ap_mean = sum(pixel_ap_list) / len(pixel_ap_list)
|
179 |
+
pixel_aupro_mean = sum(pixel_aupro_list) / len(pixel_aupro_list)
|
180 |
+
leaderboard_score_mean = sum(leaderboard_score_list) / len(
|
181 |
+
leaderboard_score_list
|
182 |
+
)
|
183 |
+
|
184 |
+
print("mean")
|
185 |
+
print(
|
186 |
+
"[image level] auroc:{}, f1:{}, ap:{}".format(
|
187 |
+
image_auroc_mean * 100, image_f1_mean * 100, image_ap_mean * 100
|
188 |
+
)
|
189 |
+
)
|
190 |
+
print(
|
191 |
+
"[pixel level] auroc:{}, f1:{}, ap:{}, aupro:{}".format(
|
192 |
+
pixel_auroc_mean * 100,
|
193 |
+
pixel_f1_mean * 100,
|
194 |
+
pixel_ap_mean * 100,
|
195 |
+
pixel_aupro_mean * 100,
|
196 |
+
)
|
197 |
+
)
|
198 |
+
print(
|
199 |
+
"leaderboard score:{}".format(
|
200 |
+
leaderboard_score_mean * 100,
|
201 |
+
)
|
202 |
+
)
|
203 |
+
|
204 |
+
# Save the final results as a csv file
|
205 |
+
if self.save_csv:
|
206 |
+
with open(self.class_name_mapping_dir, "r") as f:
|
207 |
+
class_name_mapping_dict = json.load(f)
|
208 |
+
csv_data = [
|
209 |
+
[
|
210 |
+
"Category",
|
211 |
+
"pixel_auroc",
|
212 |
+
"pixel_f1",
|
213 |
+
"pixel_ap",
|
214 |
+
"pixel_aupro",
|
215 |
+
"image_auroc",
|
216 |
+
"image_f1",
|
217 |
+
"image_ap",
|
218 |
+
"leaderboard_score",
|
219 |
+
]
|
220 |
+
]
|
221 |
+
for i, category in enumerate(self.categories):
|
222 |
+
csv_data.append(
|
223 |
+
[
|
224 |
+
class_name_mapping_dict[category],
|
225 |
+
pixel_auroc_list[i] * 100,
|
226 |
+
pixel_f1_list[i] * 100,
|
227 |
+
pixel_ap_list[i] * 100,
|
228 |
+
pixel_aupro_list[i] * 100,
|
229 |
+
image_auroc_list[i] * 100,
|
230 |
+
image_f1_list[i] * 100,
|
231 |
+
image_ap_list[i] * 100,
|
232 |
+
leaderboard_score_list[i] * 100,
|
233 |
+
]
|
234 |
+
)
|
235 |
+
csv_data.append(
|
236 |
+
[
|
237 |
+
"mean",
|
238 |
+
pixel_auroc_mean * 100,
|
239 |
+
pixel_f1_mean * 100,
|
240 |
+
pixel_ap_mean * 100,
|
241 |
+
pixel_aupro_mean * 100,
|
242 |
+
image_auroc_mean * 100,
|
243 |
+
image_f1_mean * 100,
|
244 |
+
image_ap_mean * 100,
|
245 |
+
leaderboard_score_mean * 100,
|
246 |
+
]
|
247 |
+
)
|
248 |
+
|
249 |
+
csv_file_path = os.path.join(self.output_dir, "results.csv")
|
250 |
+
with open(csv_file_path, mode="w", newline="") as file:
|
251 |
+
writer = csv.writer(file)
|
252 |
+
writer.writerows(csv_data)
|
253 |
+
|
254 |
+
# Save the final results as a json file
|
255 |
+
if self.save_json:
|
256 |
+
json_data = []
|
257 |
+
with open(self.class_name_mapping_dir, "r") as f:
|
258 |
+
class_name_mapping_dict = json.load(f)
|
259 |
+
for i, category in enumerate(self.categories):
|
260 |
+
json_data.append(
|
261 |
+
{
|
262 |
+
"Category": class_name_mapping_dict[category],
|
263 |
+
"pixel_auroc": pixel_auroc_list[i] * 100,
|
264 |
+
"pixel_f1": pixel_f1_list[i] * 100,
|
265 |
+
"pixel_ap": pixel_ap_list[i] * 100,
|
266 |
+
"pixel_aupro": pixel_aupro_list[i] * 100,
|
267 |
+
"image_auroc": image_auroc_list[i] * 100,
|
268 |
+
"image_f1": image_f1_list[i] * 100,
|
269 |
+
"image_ap": image_ap_list[i] * 100,
|
270 |
+
"leaderboard_score": leaderboard_score_list[i] * 100,
|
271 |
+
}
|
272 |
+
)
|
273 |
+
json_data.append(
|
274 |
+
{
|
275 |
+
"Category": "mean",
|
276 |
+
"pixel_auroc": pixel_auroc_mean * 100,
|
277 |
+
"pixel_f1": pixel_f1_mean * 100,
|
278 |
+
"pixel_ap": pixel_ap_mean * 100,
|
279 |
+
"pixel_aupro": pixel_aupro_mean * 100,
|
280 |
+
"image_auroc": image_auroc_mean * 100,
|
281 |
+
"image_f1": image_f1_mean * 100,
|
282 |
+
"image_ap": image_ap_mean * 100,
|
283 |
+
"leaderboard_score": leaderboard_score_mean * 100,
|
284 |
+
}
|
285 |
+
)
|
286 |
+
|
287 |
+
json_file_path = os.path.join(self.output_dir, "results.json")
|
288 |
+
with open(json_file_path, mode="w") as file:
|
289 |
+
final_json = {
|
290 |
+
"result": leaderboard_score_mean * 100,
|
291 |
+
"metadata": json_data,
|
292 |
+
}
|
293 |
+
json.dump(final_json, file, indent=4)
|
evaluation/class_name_mapping.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pill": "industrial_01",
|
3 |
+
"photovoltaic_module": "industrial_02",
|
4 |
+
"capsules": "industrial_03"
|
5 |
+
}
|
evaluation/eval_main.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------
|
2 |
+
# Do Not Alter This File!
|
3 |
+
# -----------------------------------------------------------------------------
|
4 |
+
# The following code is part of the logic used for loading and evaluating your
|
5 |
+
# output scores. Please DO NOT modify this section, as upon your submission,
|
6 |
+
# the whole evaluation logic will be overwritten by the original code.
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
|
9 |
+
import warnings
|
10 |
+
import argparse
|
11 |
+
import os
|
12 |
+
import sys
|
13 |
+
|
14 |
+
sys.path.append(os.getcwd())
|
15 |
+
from evaluation.json_score import JsonScoreEvaluator
|
16 |
+
|
17 |
+
warnings.filterwarnings("ignore")
|
18 |
+
|
19 |
+
|
20 |
+
def get_args():
|
21 |
+
parser = argparse.ArgumentParser(description="Rayan ZSAD Evaluation Code")
|
22 |
+
parser.add_argument("--data_path", type=str, default=None, help="dataset path")
|
23 |
+
parser.add_argument("--dataset_name", type=str, default=None, help="dataset name")
|
24 |
+
parser.add_argument("--class_name", type=str, default=None, help="category")
|
25 |
+
parser.add_argument("--device", type=int, default=None, help="gpu id")
|
26 |
+
parser.add_argument(
|
27 |
+
"--output_dir", type=str, default=None, help="save results path"
|
28 |
+
)
|
29 |
+
parser.add_argument(
|
30 |
+
"--output_scores_dir", type=str, default=None, help="save scores path"
|
31 |
+
)
|
32 |
+
parser.add_argument("--save_csv", type=str, default=None, help="save csv")
|
33 |
+
parser.add_argument("--save_json", type=str, default=None, help="save json")
|
34 |
+
|
35 |
+
parser.add_argument(
|
36 |
+
"--class_name_mapping_dir",
|
37 |
+
type=str,
|
38 |
+
default=None,
|
39 |
+
help="mapping from actual class names to class numbers",
|
40 |
+
)
|
41 |
+
args = parser.parse_args()
|
42 |
+
return args
|
43 |
+
|
44 |
+
|
45 |
+
def load_args(cfg, args):
|
46 |
+
cfg["datasets"]["data_path"] = args.data_path
|
47 |
+
assert os.path.exists(
|
48 |
+
cfg["datasets"]["data_path"]
|
49 |
+
), f"The dataset path {cfg['datasets']['data_path']} does not exist."
|
50 |
+
cfg["datasets"]["dataset_name"] = args.dataset_name
|
51 |
+
cfg["datasets"]["class_name"] = args.class_name
|
52 |
+
cfg["device"] = args.device
|
53 |
+
if isinstance(cfg["device"], int):
|
54 |
+
cfg["device"] = str(cfg["device"])
|
55 |
+
cfg["testing"]["output_dir"] = args.output_dir
|
56 |
+
cfg["testing"]["output_scores_dir"] = args.output_scores_dir
|
57 |
+
os.makedirs(cfg["testing"]["output_scores_dir"], exist_ok=True)
|
58 |
+
|
59 |
+
cfg["testing"]["class_name_mapping_dir"] = args.class_name_mapping_dir
|
60 |
+
if args.save_csv.lower() == "true":
|
61 |
+
cfg["testing"]["save_csv"] = True
|
62 |
+
else:
|
63 |
+
cfg["testing"]["save_csv"] = False
|
64 |
+
|
65 |
+
if args.save_json.lower() == "true":
|
66 |
+
cfg["testing"]["save_json"] = True
|
67 |
+
else:
|
68 |
+
cfg["testing"]["save_json"] = False
|
69 |
+
|
70 |
+
return cfg
|
71 |
+
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
args = get_args()
|
75 |
+
cfg = load_args(cfg={"datasets": {}, "testing": {}, "models": {}}, args=args)
|
76 |
+
print(cfg)
|
77 |
+
model = JsonScoreEvaluator(cfg=cfg)
|
78 |
+
model.main()
|
evaluation/json_score.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------
|
2 |
+
# Do Not Alter This File!
|
3 |
+
# -----------------------------------------------------------------------------
|
4 |
+
# The following code is part of the logic used for loading and evaluating your
|
5 |
+
# output scores. Please DO NOT modify this section, as upon your submission,
|
6 |
+
# the whole evaluation logic will be overwritten by the original code.
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
|
9 |
+
import warnings
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
from evaluation.base_eval import BaseEval
|
15 |
+
from evaluation.utils.json_helpers import json_to_dict
|
16 |
+
|
17 |
+
warnings.filterwarnings("ignore")
|
18 |
+
|
19 |
+
|
20 |
+
class JsonScoreEvaluator(BaseEval):
|
21 |
+
"""
|
22 |
+
Evaluates anomaly detection performance based on pre-computed scores stored in JSON files.
|
23 |
+
|
24 |
+
This class extends the BaseEval class and specializes in reading scores from JSON files,
|
25 |
+
computing evaluation metrics, and optionally saving results to CSV or JSON format.
|
26 |
+
|
27 |
+
Notes:
|
28 |
+
- Score files are expected to follow the exact dataset structure.
|
29 |
+
`{category}/{split}/{anomaly_type}/{image_name}_scores.json`
|
30 |
+
e.g., `photovoltaic_module/test/good/037_scores.json`
|
31 |
+
- Score files are expected to be at `self.scores_dir`.
|
32 |
+
|
33 |
+
Example usage:
|
34 |
+
>>> evaluator = JsonScoreEvaluator(cfg)
|
35 |
+
>>> results = evaluator.main()
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, cfg):
|
39 |
+
super().__init__(cfg)
|
40 |
+
|
41 |
+
def get_scores_for_image(self, image_path):
|
42 |
+
image_scores_path = self.get_scores_path_for_image(image_path)
|
43 |
+
image_scores = json_to_dict(image_scores_path)
|
44 |
+
|
45 |
+
return image_scores
|
46 |
+
|
47 |
+
def load_category_scores(self, category):
|
48 |
+
cls_scores_list = [] # image level prediction
|
49 |
+
anomaly_maps = [] # pixel level prediction
|
50 |
+
gt_list = [] # image level ground truth
|
51 |
+
img_masks = [] # pixel level ground truth
|
52 |
+
|
53 |
+
image_path_list = []
|
54 |
+
test_dataset = self.load_datasets(category)
|
55 |
+
test_dataloader = torch.utils.data.DataLoader(
|
56 |
+
test_dataset,
|
57 |
+
batch_size=1,
|
58 |
+
shuffle=False,
|
59 |
+
num_workers=0,
|
60 |
+
pin_memory=True,
|
61 |
+
)
|
62 |
+
|
63 |
+
for image_info in tqdm(test_dataloader):
|
64 |
+
if not isinstance(image_info, dict):
|
65 |
+
raise ValueError("Encountered non-dict image in dataloader")
|
66 |
+
|
67 |
+
del image_info["image"]
|
68 |
+
|
69 |
+
image_path = image_info["image_path"][0]
|
70 |
+
image_path_list.extend(image_path)
|
71 |
+
|
72 |
+
img_masks.append(image_info["mask"])
|
73 |
+
gt_list.extend(list(image_info["is_anomaly"].numpy()))
|
74 |
+
|
75 |
+
image_scores = self.get_scores_for_image(image_path)
|
76 |
+
cls_scores = image_scores["img_level_score"]
|
77 |
+
anomaly_maps_iter = image_scores["pix_level_score"]
|
78 |
+
|
79 |
+
cls_scores_list.append(cls_scores)
|
80 |
+
anomaly_maps.append(anomaly_maps_iter)
|
81 |
+
|
82 |
+
pr_sp = np.array(cls_scores_list)
|
83 |
+
gt_sp = np.array(gt_list)
|
84 |
+
pr_px = np.array(anomaly_maps)
|
85 |
+
gt_px = torch.cat(img_masks, dim=0).numpy().astype(np.int32)
|
86 |
+
|
87 |
+
assert pr_px.shape[1:] == (
|
88 |
+
1,
|
89 |
+
224,
|
90 |
+
224,
|
91 |
+
), "Predicted output scores do not meet the expected shape!"
|
92 |
+
assert gt_px.shape[1:] == (
|
93 |
+
1,
|
94 |
+
224,
|
95 |
+
224,
|
96 |
+
), "Loaded ground truth maps do not meet the expected shape!"
|
97 |
+
|
98 |
+
return gt_sp, pr_sp, gt_px, pr_px, image_path_list
|
evaluation/utils/json_helpers.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------
|
2 |
+
# Do Not Alter This File!
|
3 |
+
# -----------------------------------------------------------------------------
|
4 |
+
# The following code is part of the logic used for loading and evaluating your
|
5 |
+
# output scores. Please DO NOT modify this section, as upon your submission,
|
6 |
+
# the whole evaluation logic will be overwritten by the original code.
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
|
9 |
+
import json
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
|
13 |
+
class NumpyEncoder(json.JSONEncoder):
|
14 |
+
"""Special json encoder for numpy types"""
|
15 |
+
|
16 |
+
def default(self, obj):
|
17 |
+
if isinstance(obj, np.integer):
|
18 |
+
return int(obj)
|
19 |
+
elif isinstance(obj, np.floating):
|
20 |
+
return float(obj)
|
21 |
+
elif isinstance(obj, np.ndarray):
|
22 |
+
return {
|
23 |
+
"__ndarray__": obj.tolist(),
|
24 |
+
"dtype": str(obj.dtype),
|
25 |
+
"shape": obj.shape,
|
26 |
+
}
|
27 |
+
else:
|
28 |
+
return super(NumpyEncoder, self).default(obj)
|
29 |
+
|
30 |
+
|
31 |
+
def dict_to_json(dct, filename):
|
32 |
+
"""Save a dictionary to a JSON file"""
|
33 |
+
with open(filename, "w") as f:
|
34 |
+
json.dump(dct, f, cls=NumpyEncoder)
|
35 |
+
|
36 |
+
|
37 |
+
def json_to_dict(filename):
|
38 |
+
"""Load a JSON file and convert it back to a dictionary of NumPy arrays"""
|
39 |
+
with open(filename, "r") as f:
|
40 |
+
dct = json.load(f)
|
41 |
+
|
42 |
+
for k, v in dct.items():
|
43 |
+
if isinstance(v, dict) and "__ndarray__" in v:
|
44 |
+
dct[k] = np.array(v["__ndarray__"], dtype=v["dtype"]).reshape(v["shape"])
|
45 |
+
|
46 |
+
return dct
|
evaluation/utils/metrics.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------
|
2 |
+
# Do Not Alter This File!
|
3 |
+
# -----------------------------------------------------------------------------
|
4 |
+
# The following code is part of the logic used for loading and evaluating your
|
5 |
+
# output scores. Please DO NOT modify this section, as upon your submission,
|
6 |
+
# the whole evaluation logic will be overwritten by the original code.
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from sklearn.metrics import (
|
11 |
+
auc,
|
12 |
+
roc_auc_score,
|
13 |
+
average_precision_score,
|
14 |
+
precision_recall_curve,
|
15 |
+
)
|
16 |
+
from skimage import measure
|
17 |
+
|
18 |
+
|
19 |
+
# ref: https://github.com/gudovskiy/cflow-ad/blob/master/train.py
|
20 |
+
def cal_pro_score(masks, amaps, max_step=200, expect_fpr=0.3):
|
21 |
+
binary_amaps = np.zeros_like(amaps, dtype=bool)
|
22 |
+
min_th, max_th = amaps.min(), amaps.max()
|
23 |
+
delta = (max_th - min_th) / max_step
|
24 |
+
pros, fprs, ths = [], [], []
|
25 |
+
for th in np.arange(min_th, max_th, delta):
|
26 |
+
binary_amaps[amaps <= th], binary_amaps[amaps > th] = 0, 1
|
27 |
+
pro = []
|
28 |
+
for binary_amap, mask in zip(binary_amaps, masks):
|
29 |
+
for region in measure.regionprops(measure.label(mask)):
|
30 |
+
tp_pixels = binary_amap[region.coords[:, 0], region.coords[:, 1]].sum()
|
31 |
+
pro.append(tp_pixels / region.area)
|
32 |
+
inverse_masks = 1 - masks
|
33 |
+
fp_pixels = np.logical_and(inverse_masks, binary_amaps).sum()
|
34 |
+
fpr = fp_pixels / inverse_masks.sum()
|
35 |
+
pros.append(np.array(pro).mean())
|
36 |
+
fprs.append(fpr)
|
37 |
+
ths.append(th)
|
38 |
+
pros, fprs, ths = np.array(pros), np.array(fprs), np.array(ths)
|
39 |
+
idxes = fprs < expect_fpr
|
40 |
+
fprs = fprs[idxes]
|
41 |
+
fprs = (fprs - fprs.min()) / (fprs.max() - fprs.min())
|
42 |
+
pro_auc = auc(fprs, pros[idxes])
|
43 |
+
return pro_auc
|
44 |
+
|
45 |
+
|
46 |
+
def compute_metrics(gt_sp=None, pr_sp=None, gt_px=None, pr_px=None):
|
47 |
+
# classification
|
48 |
+
if (
|
49 |
+
gt_sp is None
|
50 |
+
or pr_sp is None
|
51 |
+
or gt_sp.sum() == 0
|
52 |
+
or gt_sp.sum() == gt_sp.shape[0]
|
53 |
+
):
|
54 |
+
auroc_sp, f1_sp, ap_sp = 0, 0, 0
|
55 |
+
else:
|
56 |
+
auroc_sp = roc_auc_score(gt_sp, pr_sp)
|
57 |
+
ap_sp = average_precision_score(gt_sp, pr_sp)
|
58 |
+
precisions, recalls, thresholds = precision_recall_curve(gt_sp, pr_sp)
|
59 |
+
f1_scores = (2 * precisions * recalls) / (precisions + recalls)
|
60 |
+
f1_sp = np.max(f1_scores[np.isfinite(f1_scores)])
|
61 |
+
|
62 |
+
# segmentation
|
63 |
+
if gt_px is None or pr_px is None or gt_px.sum() == 0:
|
64 |
+
auroc_px, f1_px, ap_px, aupro = 0, 0, 0, 0
|
65 |
+
else:
|
66 |
+
auroc_px = roc_auc_score(gt_px.ravel(), pr_px.ravel())
|
67 |
+
ap_px = average_precision_score(gt_px.ravel(), pr_px.ravel())
|
68 |
+
precisions, recalls, thresholds = precision_recall_curve(
|
69 |
+
gt_px.ravel(), pr_px.ravel()
|
70 |
+
)
|
71 |
+
f1_scores = (2 * precisions * recalls) / (precisions + recalls)
|
72 |
+
f1_px = np.max(f1_scores[np.isfinite(f1_scores)])
|
73 |
+
aupro = cal_pro_score(gt_px.squeeze(), pr_px.squeeze())
|
74 |
+
|
75 |
+
image_metric = [auroc_sp, f1_sp, ap_sp]
|
76 |
+
pixel_metric = [auroc_px, f1_px, ap_px, aupro]
|
77 |
+
|
78 |
+
return image_metric, pixel_metric
|
install.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# add dependencies
|
2 |
+
# python395_cuda113_pytorch1101
|
3 |
+
# please change dataset root in ./config.py according to your specifications
|
4 |
+
|
5 |
+
conda create -n AdaCLIP python=3.9.5 -y
|
6 |
+
conda activate AdaCLIP
|
7 |
+
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
|
8 |
+
pip install tqdm tensorboard setuptools==58.0.4 opencv-python scikit-image scikit-learn matplotlib seaborn ftfy regex numpy==1.26.4
|
9 |
+
pip install gradio
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
loss.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from math import exp
|
6 |
+
|
7 |
+
class FocalLoss(nn.Module):
|
8 |
+
"""
|
9 |
+
copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py
|
10 |
+
This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
|
11 |
+
'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
|
12 |
+
Focal_Loss= -1*alpha*(1-pt)*log(pt)
|
13 |
+
:param alpha: (tensor) 3D or 4D the scalar factor for this criterion
|
14 |
+
:param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
|
15 |
+
focus on hard misclassified example
|
16 |
+
:param smooth: (float,double) smooth value when cross entropy
|
17 |
+
:param balance_index: (int) balance class index, should be specific when alpha is float
|
18 |
+
:param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, apply_nonlin=None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True):
|
22 |
+
super(FocalLoss, self).__init__()
|
23 |
+
self.apply_nonlin = apply_nonlin
|
24 |
+
self.alpha = alpha
|
25 |
+
self.gamma = gamma
|
26 |
+
self.balance_index = balance_index
|
27 |
+
self.smooth = smooth
|
28 |
+
self.size_average = size_average
|
29 |
+
|
30 |
+
if self.smooth is not None:
|
31 |
+
if self.smooth < 0 or self.smooth > 1.0:
|
32 |
+
raise ValueError('smooth value should be in [0,1]')
|
33 |
+
|
34 |
+
def forward(self, logit, target):
|
35 |
+
if self.apply_nonlin is not None:
|
36 |
+
logit = self.apply_nonlin(logit)
|
37 |
+
num_class = logit.shape[1]
|
38 |
+
|
39 |
+
if logit.dim() > 2:
|
40 |
+
# N,C,d1,d2 -> N,C,m (m=d1*d2*...)
|
41 |
+
logit = logit.view(logit.size(0), logit.size(1), -1)
|
42 |
+
logit = logit.permute(0, 2, 1).contiguous()
|
43 |
+
logit = logit.view(-1, logit.size(-1))
|
44 |
+
target = torch.squeeze(target, 1)
|
45 |
+
target = target.view(-1, 1)
|
46 |
+
alpha = self.alpha
|
47 |
+
|
48 |
+
if alpha is None:
|
49 |
+
alpha = torch.ones(num_class, 1)
|
50 |
+
elif isinstance(alpha, (list, np.ndarray)):
|
51 |
+
assert len(alpha) == num_class
|
52 |
+
alpha = torch.FloatTensor(alpha).view(num_class, 1)
|
53 |
+
alpha = alpha / alpha.sum()
|
54 |
+
elif isinstance(alpha, float):
|
55 |
+
alpha = torch.ones(num_class, 1)
|
56 |
+
alpha = alpha * (1 - self.alpha)
|
57 |
+
alpha[self.balance_index] = self.alpha
|
58 |
+
|
59 |
+
else:
|
60 |
+
raise TypeError('Not support alpha type')
|
61 |
+
|
62 |
+
if alpha.device != logit.device:
|
63 |
+
alpha = alpha.to(logit.device)
|
64 |
+
|
65 |
+
idx = target.cpu().long()
|
66 |
+
|
67 |
+
one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_()
|
68 |
+
one_hot_key = one_hot_key.scatter_(1, idx, 1)
|
69 |
+
if one_hot_key.device != logit.device:
|
70 |
+
one_hot_key = one_hot_key.to(logit.device)
|
71 |
+
|
72 |
+
if self.smooth:
|
73 |
+
one_hot_key = torch.clamp(
|
74 |
+
one_hot_key, self.smooth / (num_class - 1), 1.0 - self.smooth)
|
75 |
+
pt = (one_hot_key * logit).sum(1) + self.smooth
|
76 |
+
logpt = pt.log()
|
77 |
+
|
78 |
+
gamma = self.gamma
|
79 |
+
|
80 |
+
alpha = alpha[idx]
|
81 |
+
alpha = torch.squeeze(alpha)
|
82 |
+
loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt
|
83 |
+
|
84 |
+
if self.size_average:
|
85 |
+
loss = loss.mean()
|
86 |
+
return loss
|
87 |
+
|
88 |
+
|
89 |
+
class BinaryDiceLoss(nn.Module):
|
90 |
+
def __init__(self):
|
91 |
+
super(BinaryDiceLoss, self).__init__()
|
92 |
+
|
93 |
+
def forward(self, input, targets):
|
94 |
+
# 获取每个批次的大小 N
|
95 |
+
N = targets.size()[0]
|
96 |
+
# 平滑变量
|
97 |
+
smooth = 1
|
98 |
+
# 将宽高 reshape 到同一纬度
|
99 |
+
input_flat = input.view(N, -1)
|
100 |
+
targets_flat = targets.view(N, -1)
|
101 |
+
|
102 |
+
# 计算交集
|
103 |
+
intersection = input_flat * targets_flat
|
104 |
+
N_dice_eff = (2 * intersection.sum(1) + smooth) / (input_flat.sum(1) + targets_flat.sum(1) + smooth)
|
105 |
+
# 计算一个批次中平均每张图的损失
|
106 |
+
loss = 1 - N_dice_eff.sum() / N
|
107 |
+
return loss
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
class ConADLoss(nn.Module):
|
113 |
+
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
|
114 |
+
It also supports the unsupervised contrastive loss in SimCLR"""
|
115 |
+
def __init__(self, contrast_mode='all',random_anchors=10):
|
116 |
+
super(ConADLoss, self).__init__()
|
117 |
+
assert contrast_mode in ['all', 'mean', 'random']
|
118 |
+
self.contrast_mode = contrast_mode
|
119 |
+
self.random_anchors = random_anchors
|
120 |
+
def forward(self, features, labels):
|
121 |
+
"""Compute loss for model. If both `labels` and `mask` are None,
|
122 |
+
it degenerates to SimCLR unsupervised loss:
|
123 |
+
https://arxiv.org/pdf/2002.05709.pdf
|
124 |
+
|
125 |
+
Args:
|
126 |
+
features: hidden vector of shape [bsz, C, ...].
|
127 |
+
labels: ground truth of shape [bsz, 1, ...]., where 1 denotes to abnormal, and 0 denotes to normal
|
128 |
+
Returns:
|
129 |
+
A loss scalar.
|
130 |
+
"""
|
131 |
+
device = (torch.device('cuda')
|
132 |
+
if features.is_cuda
|
133 |
+
else torch.device('cpu'))
|
134 |
+
if len(features.shape) != len(labels.shape):
|
135 |
+
raise ValueError('`features` needs to have the same dimensions with labels')
|
136 |
+
|
137 |
+
if len(features.shape) < 3:
|
138 |
+
raise ValueError('`features` needs to be [bsz, C, ...],'
|
139 |
+
'at least 3 dimensions are required')
|
140 |
+
|
141 |
+
if len(features.shape) > 3:
|
142 |
+
features = features.view(features.shape[0], features.shape[1], -1)
|
143 |
+
labels = labels.view(labels.shape[0], labels.shape[1], -1)
|
144 |
+
|
145 |
+
labels = labels.squeeze()
|
146 |
+
batch_size = features.shape[0]
|
147 |
+
|
148 |
+
C = features.shape[1]
|
149 |
+
normal_feats = features[:, :, labels == 0]
|
150 |
+
abnormal_feats = features[:, :, labels == 1]
|
151 |
+
|
152 |
+
normal_feats = normal_feats.permute((1, 0, 2)).contiguous().view(C, -1)
|
153 |
+
abnormal_feats = abnormal_feats.permute((1, 0, 2)).contiguous().view(C, -1)
|
154 |
+
|
155 |
+
contrast_count = normal_feats.shape[1]
|
156 |
+
contrast_feature = normal_feats
|
157 |
+
|
158 |
+
if self.contrast_mode == 'mean':
|
159 |
+
anchor_feature = torch.mean(normal_feats, dim=1)
|
160 |
+
anchor_feature = F.normalize(anchor_feature, dim=0, p=2)
|
161 |
+
anchor_count = 1
|
162 |
+
elif self.contrast_mode == 'all':
|
163 |
+
anchor_feature = contrast_feature
|
164 |
+
anchor_count = contrast_count
|
165 |
+
elif self.contrast_mode == 'random':
|
166 |
+
dim_to_sample = 1
|
167 |
+
num_samples = min(self.random_anchors, contrast_count)
|
168 |
+
permuted_indices = torch.randperm(normal_feats.size(dim_to_sample)).to(normal_feats.device)
|
169 |
+
selected_indices = permuted_indices[:num_samples]
|
170 |
+
anchor_feature = normal_feats.index_select(dim_to_sample, selected_indices)
|
171 |
+
else:
|
172 |
+
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
|
173 |
+
|
174 |
+
# compute logits
|
175 |
+
# maximize similarity
|
176 |
+
anchor_dot_normal = torch.matmul(anchor_feature.T, normal_feats).mean()
|
177 |
+
|
178 |
+
# minimize similarity
|
179 |
+
anchor_dot_abnormal = torch.matmul(anchor_feature.T, abnormal_feats).mean()
|
180 |
+
|
181 |
+
loss = 0
|
182 |
+
if normal_feats.shape[1] > 0:
|
183 |
+
loss -= anchor_dot_normal
|
184 |
+
if abnormal_feats.shape[1] > 0:
|
185 |
+
loss += anchor_dot_abnormal
|
186 |
+
|
187 |
+
loss = torch.exp(loss)
|
188 |
+
|
189 |
+
return loss
|