sobamchan commited on
Commit
adceddb
·
verified ·
1 Parent(s): 74d6a6d

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:942069
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: FacebookAI/roberta-base
12
+ widget:
13
+ - source_sentence: Two women having drinks and smoking cigarettes at the bar.
14
+ sentences:
15
+ - Women are celebrating at a bar.
16
+ - Two kids are outdoors.
17
+ - The four girls are attending the street festival.
18
+ - source_sentence: Two male police officers on patrol, wearing the normal gear and
19
+ bright green reflective shirts.
20
+ sentences:
21
+ - The officers have shot an unarmed black man and will not go to prison for it.
22
+ - The four girls are playing card games at the table.
23
+ - A woman is playing with a toddler.
24
+ - source_sentence: 5 women sitting around a table doing some crafts.
25
+ sentences:
26
+ - The girl wearing a dress skips down the sidewalk.
27
+ - The kids are together.
28
+ - Five men stand on chairs.
29
+ - source_sentence: Three men look on as two other men carve up a freshly barbecued
30
+ hog in the backyard.
31
+ sentences:
32
+ - A group of people prepare cars for racing.
33
+ - There are men watching others prepare food
34
+ - They are both waiting for a bus.
35
+ - source_sentence: The little boy is jumping into a puddle on the street.
36
+ sentences:
37
+ - A man is wearing a black shirt
38
+ - The dog is playing with a ball.
39
+ - The boy is outside.
40
+ datasets:
41
+ - sentence-transformers/all-nli
42
+ pipeline_tag: sentence-similarity
43
+ library_name: sentence-transformers
44
+ ---
45
+
46
+ # SentenceTransformer based on FacebookAI/roberta-base
47
+
48
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
49
+
50
+ ## Model Details
51
+
52
+ ### Model Description
53
+ - **Model Type:** Sentence Transformer
54
+ - **Base model:** [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) <!-- at revision e2da8e2f811d1448a5b465c236feacd80ffbac7b -->
55
+ - **Maximum Sequence Length:** 256 tokens
56
+ - **Output Dimensionality:** 768 dimensions
57
+ - **Similarity Function:** Cosine Similarity
58
+ - **Training Dataset:**
59
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
60
+ - **Language:** en
61
+ <!-- - **License:** Unknown -->
62
+
63
+ ### Model Sources
64
+
65
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
66
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
67
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
68
+
69
+ ### Full Model Architecture
70
+
71
+ ```
72
+ SentenceTransformer(
73
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
74
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
75
+ (2): Normalize()
76
+ )
77
+ ```
78
+
79
+ ## Usage
80
+
81
+ ### Direct Usage (Sentence Transformers)
82
+
83
+ First install the Sentence Transformers library:
84
+
85
+ ```bash
86
+ pip install -U sentence-transformers
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+ ```python
91
+ from sentence_transformers import SentenceTransformer
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SentenceTransformer("sentence_transformers_model_id")
95
+ # Run inference
96
+ sentences = [
97
+ 'The little boy is jumping into a puddle on the street.',
98
+ 'The boy is outside.',
99
+ 'The dog is playing with a ball.',
100
+ ]
101
+ embeddings = model.encode(sentences)
102
+ print(embeddings.shape)
103
+ # [3, 768]
104
+
105
+ # Get the similarity scores for the embeddings
106
+ similarities = model.similarity(embeddings, embeddings)
107
+ print(similarities.shape)
108
+ # [3, 3]
109
+ ```
110
+
111
+ <!--
112
+ ### Direct Usage (Transformers)
113
+
114
+ <details><summary>Click to see the direct usage in Transformers</summary>
115
+
116
+ </details>
117
+ -->
118
+
119
+ <!--
120
+ ### Downstream Usage (Sentence Transformers)
121
+
122
+ You can finetune this model on your own dataset.
123
+
124
+ <details><summary>Click to expand</summary>
125
+
126
+ </details>
127
+ -->
128
+
129
+ <!--
130
+ ### Out-of-Scope Use
131
+
132
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
133
+ -->
134
+
135
+ <!--
136
+ ## Bias, Risks and Limitations
137
+
138
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
139
+ -->
140
+
141
+ <!--
142
+ ### Recommendations
143
+
144
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
145
+ -->
146
+
147
+ ## Training Details
148
+
149
+ ### Training Dataset
150
+
151
+ #### all-nli
152
+
153
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
154
+ * Size: 942,069 training samples
155
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
156
+ * Approximate statistics based on the first 1000 samples:
157
+ | | premise | hypothesis | label |
158
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
159
+ | type | string | string | int |
160
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.4 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.69 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
161
+ * Samples:
162
+ | premise | hypothesis | label |
163
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
164
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
165
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
166
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
167
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
168
+ ```json
169
+ {
170
+ "scale": 20.0,
171
+ "similarity_fct": "cos_sim"
172
+ }
173
+ ```
174
+
175
+ ### Evaluation Dataset
176
+
177
+ #### all-nli
178
+
179
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
180
+ * Size: 19,657 evaluation samples
181
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
182
+ * Approximate statistics based on the first 1000 samples:
183
+ | | premise | hypothesis | label |
184
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
185
+ | type | string | string | int |
186
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.46 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
187
+ * Samples:
188
+ | premise | hypothesis | label |
189
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
190
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
191
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
192
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
193
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
194
+ ```json
195
+ {
196
+ "scale": 20.0,
197
+ "similarity_fct": "cos_sim"
198
+ }
199
+ ```
200
+
201
+ ### Training Hyperparameters
202
+ #### Non-Default Hyperparameters
203
+
204
+ - `eval_strategy`: steps
205
+ - `per_device_train_batch_size`: 128
206
+ - `per_device_eval_batch_size`: 128
207
+ - `learning_rate`: 1e-05
208
+ - `warmup_ratio`: 0.1
209
+ - `batch_sampler`: no_duplicates
210
+
211
+ #### All Hyperparameters
212
+ <details><summary>Click to expand</summary>
213
+
214
+ - `overwrite_output_dir`: False
215
+ - `do_predict`: False
216
+ - `eval_strategy`: steps
217
+ - `prediction_loss_only`: True
218
+ - `per_device_train_batch_size`: 128
219
+ - `per_device_eval_batch_size`: 128
220
+ - `per_gpu_train_batch_size`: None
221
+ - `per_gpu_eval_batch_size`: None
222
+ - `gradient_accumulation_steps`: 1
223
+ - `eval_accumulation_steps`: None
224
+ - `torch_empty_cache_steps`: None
225
+ - `learning_rate`: 1e-05
226
+ - `weight_decay`: 0.0
227
+ - `adam_beta1`: 0.9
228
+ - `adam_beta2`: 0.999
229
+ - `adam_epsilon`: 1e-08
230
+ - `max_grad_norm`: 1.0
231
+ - `num_train_epochs`: 3
232
+ - `max_steps`: -1
233
+ - `lr_scheduler_type`: linear
234
+ - `lr_scheduler_kwargs`: {}
235
+ - `warmup_ratio`: 0.1
236
+ - `warmup_steps`: 0
237
+ - `log_level`: passive
238
+ - `log_level_replica`: warning
239
+ - `log_on_each_node`: True
240
+ - `logging_nan_inf_filter`: True
241
+ - `save_safetensors`: True
242
+ - `save_on_each_node`: False
243
+ - `save_only_model`: False
244
+ - `restore_callback_states_from_checkpoint`: False
245
+ - `no_cuda`: False
246
+ - `use_cpu`: False
247
+ - `use_mps_device`: False
248
+ - `seed`: 42
249
+ - `data_seed`: None
250
+ - `jit_mode_eval`: False
251
+ - `use_ipex`: False
252
+ - `bf16`: False
253
+ - `fp16`: False
254
+ - `fp16_opt_level`: O1
255
+ - `half_precision_backend`: auto
256
+ - `bf16_full_eval`: False
257
+ - `fp16_full_eval`: False
258
+ - `tf32`: None
259
+ - `local_rank`: 0
260
+ - `ddp_backend`: None
261
+ - `tpu_num_cores`: None
262
+ - `tpu_metrics_debug`: False
263
+ - `debug`: []
264
+ - `dataloader_drop_last`: False
265
+ - `dataloader_num_workers`: 0
266
+ - `dataloader_prefetch_factor`: None
267
+ - `past_index`: -1
268
+ - `disable_tqdm`: False
269
+ - `remove_unused_columns`: True
270
+ - `label_names`: None
271
+ - `load_best_model_at_end`: False
272
+ - `ignore_data_skip`: False
273
+ - `fsdp`: []
274
+ - `fsdp_min_num_params`: 0
275
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
276
+ - `fsdp_transformer_layer_cls_to_wrap`: None
277
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
278
+ - `deepspeed`: None
279
+ - `label_smoothing_factor`: 0.0
280
+ - `optim`: adamw_torch
281
+ - `optim_args`: None
282
+ - `adafactor`: False
283
+ - `group_by_length`: False
284
+ - `length_column_name`: length
285
+ - `ddp_find_unused_parameters`: None
286
+ - `ddp_bucket_cap_mb`: None
287
+ - `ddp_broadcast_buffers`: False
288
+ - `dataloader_pin_memory`: True
289
+ - `dataloader_persistent_workers`: False
290
+ - `skip_memory_metrics`: True
291
+ - `use_legacy_prediction_loop`: False
292
+ - `push_to_hub`: False
293
+ - `resume_from_checkpoint`: None
294
+ - `hub_model_id`: None
295
+ - `hub_strategy`: every_save
296
+ - `hub_private_repo`: None
297
+ - `hub_always_push`: False
298
+ - `gradient_checkpointing`: False
299
+ - `gradient_checkpointing_kwargs`: None
300
+ - `include_inputs_for_metrics`: False
301
+ - `include_for_metrics`: []
302
+ - `eval_do_concat_batches`: True
303
+ - `fp16_backend`: auto
304
+ - `push_to_hub_model_id`: None
305
+ - `push_to_hub_organization`: None
306
+ - `mp_parameters`:
307
+ - `auto_find_batch_size`: False
308
+ - `full_determinism`: False
309
+ - `torchdynamo`: None
310
+ - `ray_scope`: last
311
+ - `ddp_timeout`: 1800
312
+ - `torch_compile`: False
313
+ - `torch_compile_backend`: None
314
+ - `torch_compile_mode`: None
315
+ - `dispatch_batches`: None
316
+ - `split_batches`: None
317
+ - `include_tokens_per_second`: False
318
+ - `include_num_input_tokens_seen`: False
319
+ - `neftune_noise_alpha`: None
320
+ - `optim_target_modules`: None
321
+ - `batch_eval_metrics`: False
322
+ - `eval_on_start`: False
323
+ - `use_liger_kernel`: False
324
+ - `eval_use_gather_object`: False
325
+ - `average_tokens_across_devices`: False
326
+ - `prompts`: None
327
+ - `batch_sampler`: no_duplicates
328
+ - `multi_dataset_batch_sampler`: proportional
329
+
330
+ </details>
331
+
332
+ ### Training Logs
333
+ | Epoch | Step | Training Loss | Validation Loss |
334
+ |:------:|:----:|:-------------:|:---------------:|
335
+ | 0.0007 | 5 | - | 4.4994 |
336
+ | 0.0014 | 10 | - | 4.4981 |
337
+ | 0.0020 | 15 | - | 4.4960 |
338
+ | 0.0027 | 20 | - | 4.4930 |
339
+ | 0.0034 | 25 | - | 4.4890 |
340
+ | 0.0041 | 30 | - | 4.4842 |
341
+ | 0.0048 | 35 | - | 4.4784 |
342
+ | 0.0054 | 40 | - | 4.4716 |
343
+ | 0.0061 | 45 | - | 4.4636 |
344
+ | 0.0068 | 50 | - | 4.4543 |
345
+ | 0.0075 | 55 | - | 4.4438 |
346
+ | 0.0082 | 60 | - | 4.4321 |
347
+ | 0.0088 | 65 | - | 4.4191 |
348
+ | 0.0095 | 70 | - | 4.4042 |
349
+ | 0.0102 | 75 | - | 4.3875 |
350
+ | 0.0109 | 80 | - | 4.3686 |
351
+ | 0.0115 | 85 | - | 4.3474 |
352
+ | 0.0122 | 90 | - | 4.3236 |
353
+ | 0.0129 | 95 | - | 4.2968 |
354
+ | 0.0136 | 100 | 4.4995 | 4.2666 |
355
+ | 0.0143 | 105 | - | 4.2326 |
356
+ | 0.0149 | 110 | - | 4.1947 |
357
+ | 0.0156 | 115 | - | 4.1516 |
358
+ | 0.0163 | 120 | - | 4.1029 |
359
+ | 0.0170 | 125 | - | 4.0476 |
360
+ | 0.0177 | 130 | - | 3.9850 |
361
+ | 0.0183 | 135 | - | 3.9162 |
362
+ | 0.0190 | 140 | - | 3.8397 |
363
+ | 0.0197 | 145 | - | 3.7522 |
364
+ | 0.0204 | 150 | - | 3.6521 |
365
+ | 0.0211 | 155 | - | 3.5388 |
366
+ | 0.0217 | 160 | - | 3.4114 |
367
+ | 0.0224 | 165 | - | 3.2701 |
368
+ | 0.0231 | 170 | - | 3.1147 |
369
+ | 0.0238 | 175 | - | 2.9471 |
370
+ | 0.0245 | 180 | - | 2.7710 |
371
+ | 0.0251 | 185 | - | 2.5909 |
372
+ | 0.0258 | 190 | - | 2.4127 |
373
+ | 0.0265 | 195 | - | 2.2439 |
374
+ | 0.0272 | 200 | 3.6918 | 2.0869 |
375
+
376
+
377
+ ### Framework Versions
378
+ - Python: 3.12.8
379
+ - Sentence Transformers: 3.4.1
380
+ - Transformers: 4.48.3
381
+ - PyTorch: 2.2.0+cu121
382
+ - Accelerate: 1.3.0
383
+ - Datasets: 3.2.0
384
+ - Tokenizers: 0.21.0
385
+
386
+ ## Citation
387
+
388
+ ### BibTeX
389
+
390
+ #### Sentence Transformers
391
+ ```bibtex
392
+ @inproceedings{reimers-2019-sentence-bert,
393
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
394
+ author = "Reimers, Nils and Gurevych, Iryna",
395
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
396
+ month = "11",
397
+ year = "2019",
398
+ publisher = "Association for Computational Linguistics",
399
+ url = "https://arxiv.org/abs/1908.10084",
400
+ }
401
+ ```
402
+
403
+ #### MultipleNegativesRankingLoss
404
+ ```bibtex
405
+ @misc{henderson2017efficient,
406
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
407
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
408
+ year={2017},
409
+ eprint={1705.00652},
410
+ archivePrefix={arXiv},
411
+ primaryClass={cs.CL}
412
+ }
413
+ ```
414
+
415
+ <!--
416
+ ## Glossary
417
+
418
+ *Clearly define terms in order to be accessible across audiences.*
419
+ -->
420
+
421
+ <!--
422
+ ## Model Card Authors
423
+
424
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Contact
429
+
430
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
431
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "FacebookAI/roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.48.3",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.2.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc8cc85c55b6bbb72e76b8a5eef72119ae280316bc62e71551e28cf9798ddb5c
3
+ size 498604904
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55eae53f2d09dac86101a903fd3ed315050b708d7c837a6de8747305eefcd3ae
3
+ size 992605114
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f90981b5d1f47c3584231bb03837fe63c38d077c5282afeee27a6ffb123d325d
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3548ec929f30e8db5911d989c7b7aec9195bb8526d774226d31aa79afb0de72e
3
+ size 1064
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 256,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
trainer_state.json ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.02717391304347826,
5
+ "eval_steps": 5,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0006793478260869565,
13
+ "eval_loss": 4.499350547790527,
14
+ "eval_runtime": 20.1523,
15
+ "eval_samples_per_second": 975.424,
16
+ "eval_steps_per_second": 7.642,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.001358695652173913,
21
+ "eval_loss": 4.498117923736572,
22
+ "eval_runtime": 20.4966,
23
+ "eval_samples_per_second": 959.037,
24
+ "eval_steps_per_second": 7.513,
25
+ "step": 10
26
+ },
27
+ {
28
+ "epoch": 0.0020380434782608695,
29
+ "eval_loss": 4.495996475219727,
30
+ "eval_runtime": 21.0485,
31
+ "eval_samples_per_second": 933.891,
32
+ "eval_steps_per_second": 7.316,
33
+ "step": 15
34
+ },
35
+ {
36
+ "epoch": 0.002717391304347826,
37
+ "eval_loss": 4.492975234985352,
38
+ "eval_runtime": 21.3506,
39
+ "eval_samples_per_second": 920.677,
40
+ "eval_steps_per_second": 7.213,
41
+ "step": 20
42
+ },
43
+ {
44
+ "epoch": 0.0033967391304347825,
45
+ "eval_loss": 4.489028453826904,
46
+ "eval_runtime": 21.5145,
47
+ "eval_samples_per_second": 913.661,
48
+ "eval_steps_per_second": 7.158,
49
+ "step": 25
50
+ },
51
+ {
52
+ "epoch": 0.004076086956521739,
53
+ "eval_loss": 4.484206199645996,
54
+ "eval_runtime": 21.5836,
55
+ "eval_samples_per_second": 910.738,
56
+ "eval_steps_per_second": 7.135,
57
+ "step": 30
58
+ },
59
+ {
60
+ "epoch": 0.004755434782608696,
61
+ "eval_loss": 4.478429317474365,
62
+ "eval_runtime": 21.7892,
63
+ "eval_samples_per_second": 902.143,
64
+ "eval_steps_per_second": 7.068,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 0.005434782608695652,
69
+ "eval_loss": 4.471565246582031,
70
+ "eval_runtime": 21.9727,
71
+ "eval_samples_per_second": 894.608,
72
+ "eval_steps_per_second": 7.009,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 0.006114130434782609,
77
+ "eval_loss": 4.463589668273926,
78
+ "eval_runtime": 21.6519,
79
+ "eval_samples_per_second": 907.863,
80
+ "eval_steps_per_second": 7.113,
81
+ "step": 45
82
+ },
83
+ {
84
+ "epoch": 0.006793478260869565,
85
+ "eval_loss": 4.454347610473633,
86
+ "eval_runtime": 21.7784,
87
+ "eval_samples_per_second": 902.593,
88
+ "eval_steps_per_second": 7.071,
89
+ "step": 50
90
+ },
91
+ {
92
+ "epoch": 0.007472826086956522,
93
+ "eval_loss": 4.443789958953857,
94
+ "eval_runtime": 21.9874,
95
+ "eval_samples_per_second": 894.012,
96
+ "eval_steps_per_second": 7.004,
97
+ "step": 55
98
+ },
99
+ {
100
+ "epoch": 0.008152173913043478,
101
+ "eval_loss": 4.432095527648926,
102
+ "eval_runtime": 21.6944,
103
+ "eval_samples_per_second": 906.087,
104
+ "eval_steps_per_second": 7.099,
105
+ "step": 60
106
+ },
107
+ {
108
+ "epoch": 0.008831521739130434,
109
+ "eval_loss": 4.419074535369873,
110
+ "eval_runtime": 21.7766,
111
+ "eval_samples_per_second": 902.668,
112
+ "eval_steps_per_second": 7.072,
113
+ "step": 65
114
+ },
115
+ {
116
+ "epoch": 0.009510869565217392,
117
+ "eval_loss": 4.404222011566162,
118
+ "eval_runtime": 21.9472,
119
+ "eval_samples_per_second": 895.649,
120
+ "eval_steps_per_second": 7.017,
121
+ "step": 70
122
+ },
123
+ {
124
+ "epoch": 0.010190217391304348,
125
+ "eval_loss": 4.387468338012695,
126
+ "eval_runtime": 22.1085,
127
+ "eval_samples_per_second": 889.115,
128
+ "eval_steps_per_second": 6.966,
129
+ "step": 75
130
+ },
131
+ {
132
+ "epoch": 0.010869565217391304,
133
+ "eval_loss": 4.368589878082275,
134
+ "eval_runtime": 21.8154,
135
+ "eval_samples_per_second": 901.063,
136
+ "eval_steps_per_second": 7.059,
137
+ "step": 80
138
+ },
139
+ {
140
+ "epoch": 0.01154891304347826,
141
+ "eval_loss": 4.347426891326904,
142
+ "eval_runtime": 21.8937,
143
+ "eval_samples_per_second": 897.84,
144
+ "eval_steps_per_second": 7.034,
145
+ "step": 85
146
+ },
147
+ {
148
+ "epoch": 0.012228260869565218,
149
+ "eval_loss": 4.32356595993042,
150
+ "eval_runtime": 21.9031,
151
+ "eval_samples_per_second": 897.453,
152
+ "eval_steps_per_second": 7.031,
153
+ "step": 90
154
+ },
155
+ {
156
+ "epoch": 0.012907608695652174,
157
+ "eval_loss": 4.296773433685303,
158
+ "eval_runtime": 22.045,
159
+ "eval_samples_per_second": 891.674,
160
+ "eval_steps_per_second": 6.986,
161
+ "step": 95
162
+ },
163
+ {
164
+ "epoch": 0.01358695652173913,
165
+ "grad_norm": 11.771966934204102,
166
+ "learning_rate": 4.528985507246377e-07,
167
+ "loss": 4.4995,
168
+ "step": 100
169
+ },
170
+ {
171
+ "epoch": 0.01358695652173913,
172
+ "eval_loss": 4.266582489013672,
173
+ "eval_runtime": 21.7748,
174
+ "eval_samples_per_second": 902.742,
175
+ "eval_steps_per_second": 7.072,
176
+ "step": 100
177
+ },
178
+ {
179
+ "epoch": 0.014266304347826086,
180
+ "eval_loss": 4.232626914978027,
181
+ "eval_runtime": 21.7463,
182
+ "eval_samples_per_second": 903.924,
183
+ "eval_steps_per_second": 7.082,
184
+ "step": 105
185
+ },
186
+ {
187
+ "epoch": 0.014945652173913044,
188
+ "eval_loss": 4.194711208343506,
189
+ "eval_runtime": 22.0767,
190
+ "eval_samples_per_second": 890.396,
191
+ "eval_steps_per_second": 6.976,
192
+ "step": 110
193
+ },
194
+ {
195
+ "epoch": 0.015625,
196
+ "eval_loss": 4.151618957519531,
197
+ "eval_runtime": 21.7284,
198
+ "eval_samples_per_second": 904.667,
199
+ "eval_steps_per_second": 7.087,
200
+ "step": 115
201
+ },
202
+ {
203
+ "epoch": 0.016304347826086956,
204
+ "eval_loss": 4.102933883666992,
205
+ "eval_runtime": 21.8375,
206
+ "eval_samples_per_second": 900.149,
207
+ "eval_steps_per_second": 7.052,
208
+ "step": 120
209
+ },
210
+ {
211
+ "epoch": 0.016983695652173912,
212
+ "eval_loss": 4.047597408294678,
213
+ "eval_runtime": 21.8792,
214
+ "eval_samples_per_second": 898.434,
215
+ "eval_steps_per_second": 7.039,
216
+ "step": 125
217
+ },
218
+ {
219
+ "epoch": 0.017663043478260868,
220
+ "eval_loss": 3.9850316047668457,
221
+ "eval_runtime": 22.0074,
222
+ "eval_samples_per_second": 893.2,
223
+ "eval_steps_per_second": 6.998,
224
+ "step": 130
225
+ },
226
+ {
227
+ "epoch": 0.018342391304347828,
228
+ "eval_loss": 3.9161784648895264,
229
+ "eval_runtime": 21.9382,
230
+ "eval_samples_per_second": 896.016,
231
+ "eval_steps_per_second": 7.02,
232
+ "step": 135
233
+ },
234
+ {
235
+ "epoch": 0.019021739130434784,
236
+ "eval_loss": 3.839725971221924,
237
+ "eval_runtime": 21.8144,
238
+ "eval_samples_per_second": 901.1,
239
+ "eval_steps_per_second": 7.06,
240
+ "step": 140
241
+ },
242
+ {
243
+ "epoch": 0.01970108695652174,
244
+ "eval_loss": 3.7521822452545166,
245
+ "eval_runtime": 21.6841,
246
+ "eval_samples_per_second": 906.516,
247
+ "eval_steps_per_second": 7.102,
248
+ "step": 145
249
+ },
250
+ {
251
+ "epoch": 0.020380434782608696,
252
+ "eval_loss": 3.652061700820923,
253
+ "eval_runtime": 21.8254,
254
+ "eval_samples_per_second": 900.648,
255
+ "eval_steps_per_second": 7.056,
256
+ "step": 150
257
+ },
258
+ {
259
+ "epoch": 0.021059782608695652,
260
+ "eval_loss": 3.5387539863586426,
261
+ "eval_runtime": 21.8927,
262
+ "eval_samples_per_second": 897.878,
263
+ "eval_steps_per_second": 7.034,
264
+ "step": 155
265
+ },
266
+ {
267
+ "epoch": 0.021739130434782608,
268
+ "eval_loss": 3.4114441871643066,
269
+ "eval_runtime": 21.8999,
270
+ "eval_samples_per_second": 897.585,
271
+ "eval_steps_per_second": 7.032,
272
+ "step": 160
273
+ },
274
+ {
275
+ "epoch": 0.022418478260869564,
276
+ "eval_loss": 3.2700562477111816,
277
+ "eval_runtime": 22.0501,
278
+ "eval_samples_per_second": 891.469,
279
+ "eval_steps_per_second": 6.984,
280
+ "step": 165
281
+ },
282
+ {
283
+ "epoch": 0.02309782608695652,
284
+ "eval_loss": 3.114734172821045,
285
+ "eval_runtime": 21.7106,
286
+ "eval_samples_per_second": 905.412,
287
+ "eval_steps_per_second": 7.093,
288
+ "step": 170
289
+ },
290
+ {
291
+ "epoch": 0.02377717391304348,
292
+ "eval_loss": 2.9471371173858643,
293
+ "eval_runtime": 21.8419,
294
+ "eval_samples_per_second": 899.966,
295
+ "eval_steps_per_second": 7.051,
296
+ "step": 175
297
+ },
298
+ {
299
+ "epoch": 0.024456521739130436,
300
+ "eval_loss": 2.7709779739379883,
301
+ "eval_runtime": 21.8693,
302
+ "eval_samples_per_second": 898.839,
303
+ "eval_steps_per_second": 7.042,
304
+ "step": 180
305
+ },
306
+ {
307
+ "epoch": 0.025135869565217392,
308
+ "eval_loss": 2.590932607650757,
309
+ "eval_runtime": 22.0818,
310
+ "eval_samples_per_second": 890.189,
311
+ "eval_steps_per_second": 6.974,
312
+ "step": 185
313
+ },
314
+ {
315
+ "epoch": 0.025815217391304348,
316
+ "eval_loss": 2.4126803874969482,
317
+ "eval_runtime": 21.8508,
318
+ "eval_samples_per_second": 899.601,
319
+ "eval_steps_per_second": 7.048,
320
+ "step": 190
321
+ },
322
+ {
323
+ "epoch": 0.026494565217391304,
324
+ "eval_loss": 2.243886947631836,
325
+ "eval_runtime": 21.9268,
326
+ "eval_samples_per_second": 896.483,
327
+ "eval_steps_per_second": 7.023,
328
+ "step": 195
329
+ },
330
+ {
331
+ "epoch": 0.02717391304347826,
332
+ "grad_norm": 25.208101272583008,
333
+ "learning_rate": 9.057971014492754e-07,
334
+ "loss": 3.6918,
335
+ "step": 200
336
+ },
337
+ {
338
+ "epoch": 0.02717391304347826,
339
+ "eval_loss": 2.0869383811950684,
340
+ "eval_runtime": 21.9994,
341
+ "eval_samples_per_second": 893.524,
342
+ "eval_steps_per_second": 7.0,
343
+ "step": 200
344
+ }
345
+ ],
346
+ "logging_steps": 100,
347
+ "max_steps": 22080,
348
+ "num_input_tokens_seen": 0,
349
+ "num_train_epochs": 3,
350
+ "save_steps": 5,
351
+ "stateful_callbacks": {
352
+ "TrainerControl": {
353
+ "args": {
354
+ "should_epoch_stop": false,
355
+ "should_evaluate": false,
356
+ "should_log": false,
357
+ "should_save": true,
358
+ "should_training_stop": false
359
+ },
360
+ "attributes": {}
361
+ }
362
+ },
363
+ "total_flos": 0.0,
364
+ "train_batch_size": 128,
365
+ "trial_name": null,
366
+ "trial_params": null
367
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2f93b2a194080a99e25fa57940c8bf7575648daff209273d91520de8b50024b
3
+ size 5624
vocab.json ADDED
The diff for this file is too large to render. See raw diff