File size: 4,721 Bytes
0e37bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import subprocess
import time
from logging import getLogger

import numpy as np
import torch
import torchvision

_GLOBAL_SEED = 0
logger = getLogger()


class ImageNet(torchvision.datasets.ImageFolder):

    def __init__(
        self,
        root,
        image_folder="imagenet_full_size/061417/",
        tar_file="imagenet_full_size-061417.tar.gz",
        transform=None,
        train=True,
        job_id=None,
        local_rank=None,
        index_targets=False,
    ):
        """
        ImageNet

        Dataset wrapper

        :param root: root network directory for ImageNet data
        :param image_folder: path to images inside root network directory
        :param tar_file: zipped image_folder inside root network directory
        :param train: whether to load train data (or validation)
        :param job_id: scheduler job-id used to create dir on local machine
        :param index_targets: whether to index the id of each labeled image
        """

        suffix = "train/" if train else "val/"
        data_path = os.path.join(root, image_folder, suffix)
        logger.info(f"data-path {data_path}")

        super(ImageNet, self).__init__(root=data_path, transform=transform)
        logger.info("Initialized ImageNet")

        if index_targets:
            self.targets = []
            for sample in self.samples:
                self.targets.append(sample[1])
            self.targets = np.array(self.targets)
            self.samples = np.array(self.samples)

            mint = None
            self.target_indices = []
            for t in range(len(self.classes)):
                indices = np.squeeze(np.argwhere(self.targets == t)).tolist()
                self.target_indices.append(indices)
                mint = len(indices) if mint is None else min(mint, len(indices))
                logger.debug(f"num-labeled target {t} {len(indices)}")
            logger.info(f"min. labeled indices {mint}")


class ImageNetSubset(object):

    def __init__(self, dataset, subset_file):
        """
        ImageNetSubset

        :param dataset: ImageNet dataset object
        :param subset_file: '.txt' file containing IDs of IN1K images to keep
        """
        self.dataset = dataset
        self.subset_file = subset_file
        self.filter_dataset_(subset_file)

    def filter_dataset_(self, subset_file):
        """Filter self.dataset to a subset"""
        root = self.dataset.root
        class_to_idx = self.dataset.class_to_idx
        # -- update samples to subset of IN1k targets/samples
        new_samples = []
        logger.info(f"Using {subset_file}")
        with open(subset_file, "r") as rfile:
            for line in rfile:
                class_name = line.split("_")[0]
                target = class_to_idx[class_name]
                img = line.split("\n")[0]
                new_samples.append((os.path.join(root, class_name, img), target))
        self.samples = new_samples

    @property
    def classes(self):
        return self.dataset.classes

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, index):
        path, target = self.samples[index]
        img = self.dataset.loader(path)
        if self.dataset.transform is not None:
            img = self.dataset.transform(img)
        if self.dataset.target_transform is not None:
            target = self.dataset.target_transform(target)
        return img, target


def make_imagenet1k(
    transform,
    batch_size,
    collator=None,
    pin_mem=True,
    num_workers=8,
    world_size=1,
    rank=0,
    root_path=None,
    image_folder=None,
    training=True,
    drop_last=True,
    persistent_workers=False,
    subset_file=None,
):
    dataset = ImageNet(
        root=root_path,
        image_folder=image_folder,
        transform=transform,
        train=training,
        index_targets=False,
    )
    if subset_file is not None:
        dataset = ImageNetSubset(dataset, subset_file)
    logger.info("ImageNet dataset created")
    dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset=dataset, num_replicas=world_size, rank=rank)
    data_loader = torch.utils.data.DataLoader(
        dataset,
        collate_fn=collator,
        sampler=dist_sampler,
        batch_size=batch_size,
        drop_last=drop_last,
        pin_memory=pin_mem,
        num_workers=num_workers,
        persistent_workers=persistent_workers,
    )
    logger.info("ImageNet unsupervised data loader created")

    return dataset, data_loader, dist_sampler