File size: 8,503 Bytes
0e37bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import bisect
import csv
import io
import time

import numpy as np
import torch
from torch.utils.data import _utils
from torch.utils.data.dataloader import ExceptionWrapper, _DatasetKind, _MultiProcessingDataLoaderIter

from src.utils.monitoring import ResourceMonitoringThread


class ConcatIndices:
    """Helper to map indices of concatenated/mixed datasets to the sample index for the corresponding dataset."""

    cumulative_sizes: np.ndarray

    def __init__(self, sizes):
        self.cumulative_sizes = np.cumsum(sizes)

    def __len__(self):
        return self.cumulative_sizes[-1]

    def __getitem__(self, idx):
        # Returns a pair (dataset_idx, sample_idx)
        if idx < 0 or idx >= len(self):
            raise ValueError(f"index must be between 0 and the total size ({len(self)})")
        dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
        if dataset_idx == 0:
            return dataset_idx, idx
        return dataset_idx, idx - self.cumulative_sizes[dataset_idx - 1]


class CSVLogger(object):
    """An append-to CSV abstraction. File I/O requires a flush."""

    def __init__(self, fname, header):
        """Write header to internal buffers."""
        self.fname = fname
        self.buffer = io.StringIO()
        self.writer = csv.writer(self.buffer, quoting=csv.QUOTE_NONNUMERIC)
        self.writer.writerow(header)
        self.initialized = False

    def writerow(self, row) -> None:
        """Write row to internal buffers."""
        self.writer.writerow(row)

    def flush(self) -> None:
        """Flush buffer to file."""
        # Overwrite old file
        mode = "a+" if self.initialized else "w"

        with open(self.fname, mode, newline="") as f:
            f.write(self.buffer.getvalue())

        self.buffer = io.StringIO()
        self.writer = csv.writer(self.buffer, quoting=csv.QUOTE_NONNUMERIC)
        self.initialized = True


class MonitoredDataset(torch.utils.data.Dataset):
    """Implement resource monitoring on a per-worker basis.

    The sampling occurs every monitor_interval seconds and writes the log
    every log_interval seconds to a file specified by log_filename, which
    maps a worker id to a file using the '%w' placeholder.

    Warning: Do not call this dataset before it is consumed in the DataLoader.
    """

    def __init__(
        self, dataset: torch.utils.data.Dataset, log_filename: str, log_interval: float, monitor_interval: float
    ):
        self.dataset = dataset
        self.log_filename = str(log_filename)
        self.log_interval = log_interval
        self.monitor_interval = monitor_interval
        self._csv_log = None
        self._monitoring_thread = None
        self._last_log_time = None
        # Patch getitems dynamically
        if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__:

            def __getitems__(self, index):
                self.maybe_start_resource_monitoring()
                return self.dataset.__getitems__(index)

            self.__getitems__ = __getitems__

    def __del__(self):
        self.stop_resource_monitoring()

    def __getitem__(self, index):
        self.maybe_start_resource_monitoring()
        return self.dataset.__getitem__(index)

    def __len__(self):
        return len(self.dataset)

    def _elapsed_log_time(self):
        if self._last_log_time is None:
            return float("inf")
        else:
            return time.perf_counter() - self._last_log_time

    def _update_log_time(self):
        self._last_log_time = time.perf_counter()

    def maybe_start_resource_monitoring(self):
        if self._monitoring_thread is None:

            def callback_fn(resource_sample):
                worker_info = torch.utils.data.get_worker_info()
                worker_id = worker_info.id

                if self._csv_log is None:
                    header = [f.name for f in resource_sample.fields()]
                    log_filename = self.log_filename.replace("%w", str(worker_id))
                    self._csv_log = CSVLogger(log_filename, header)
                row_values = resource_sample.as_tuple()
                self._csv_log.writerow(row_values)

                if self._elapsed_log_time() > self.log_interval:
                    self._csv_log.flush()
                    self._update_log_time()

            self._monitoring_thread = ResourceMonitoringThread(
                None, self.monitor_interval, stats_callback_fn=callback_fn
            )
            self._monitoring_thread.start()

    def stop_resource_monitoring(self):
        if self._monitoring_thread:
            self._monitoring_thread.stop()


class NondeterministicDataLoader(torch.utils.data.DataLoader):
    """Override torch dataloader to return out of order."""

    def __init__(self, *args, **kwargs):
        """Pass through constructor."""
        super().__init__(*args, **kwargs)

    def _get_iterator(self):
        if self.num_workers:
            self.check_worker_number_rationality()
            return _SloppyMultiProcessingDataLoaderIter(self)
        else:
            return super()._get_iterator()


class _SloppyMultiProcessingDataLoaderIter(_MultiProcessingDataLoaderIter):

    def __init__(self, *args, **kwargs):
        """Pass through constructor."""
        super().__init__(*args, **kwargs)

    def _next_data(self):
        """Adds out of order returns."""
        while True:
            # If the worker responsible for `self._rcvd_idx` has already ended
            # and was unable to fulfill this task (due to exhausting an `IterableDataset`),
            # we try to advance `self._rcvd_idx` to find the next valid index.
            #
            # This part needs to run in the loop because both the `self._get_data()`
            # call and `_IterableDatasetStopIteration` check below can mark
            # extra worker(s) as dead.
            while self._rcvd_idx < self._send_idx:
                info = self._task_info[self._rcvd_idx]
                if info is None:
                    # Found a reordered tombstone
                    del self._task_info[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._try_put_index()
                else:
                    worker_id = info[0]
                    # has data or is still active
                    if len(info) == 2 or self._workers_status[worker_id]:
                        break
                    del self._task_info[self._rcvd_idx]
                    self._rcvd_idx += 1
            else:
                # no valid `self._rcvd_idx` is found (i.e., didn't break)
                if not self._persistent_workers:
                    self._shutdown_workers()
                raise StopIteration

            # Now `self._rcvd_idx` is the batch index we want to fetch

            # Check if the next sample has already been generated
            if len(self._task_info[self._rcvd_idx]) == 2:
                data = self._task_info.pop(self._rcvd_idx)[1]
                return self._process_data(data)

            assert not self._shutdown and self._tasks_outstanding > 0
            idx, data = self._get_data()
            self._tasks_outstanding -= 1
            if self._dataset_kind == _DatasetKind.Iterable:
                # Check for _IterableDatasetStopIteration
                if isinstance(data, _utils.worker._IterableDatasetStopIteration):
                    if self._persistent_workers:
                        self._workers_status[data.worker_id] = False
                    else:
                        self._mark_worker_as_unavailable(data.worker_id)
                    self._try_put_index()
                    continue

            if idx != self._rcvd_idx:
                # Tombstone to recieve later
                self._task_info[idx] = None
                if isinstance(data, ExceptionWrapper):
                    data.reraise()
                return data
            else:
                del self._task_info[idx]
                return self._process_data(data)


def get_worker_info():
    worker_info = torch.utils.data.get_worker_info()
    if worker_info is None:
        num_workers = 1
        worker_id = 0
    else:
        num_workers = worker_info.num_workers
        worker_id = worker_info.id
    return num_workers, worker_id