File size: 5,274 Bytes
0e37bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import torch
from PIL import Image


def convert_img(img):
    """Converts (H, W, C) numpy.ndarray to (C, W, H) format"""
    if len(img.shape) == 3:
        img = img.transpose(2, 0, 1)
    if len(img.shape) == 2:
        img = np.expand_dims(img, 0)
    return img


class ClipToTensor(object):
    """Convert a list of m (H x W x C) numpy.ndarrays in the range [0, 255]
    to a torch.FloatTensor of shape (C x m x H x W) in the range [0, 1.0]
    """

    def __init__(self, channel_nb=3, div_255=True, numpy=False):
        self.channel_nb = channel_nb
        self.div_255 = div_255
        self.numpy = numpy

    def __call__(self, clip):
        """
        Args: clip (list of numpy.ndarray): clip (list of images)
        to be converted to tensor.
        """
        # Retrieve shape
        if isinstance(clip[0], np.ndarray):
            h, w, ch = clip[0].shape
            assert ch == self.channel_nb, "Got {0} instead of 3 channels".format(ch)
        elif isinstance(clip[0], Image.Image):
            w, h = clip[0].size
        elif isinstance(clip[0], torch.Tensor):
            tensor_clip = torch.stack(clip)
            # Converting (T, C, H, W) -> (C, T, H, W) to match what `convert_img` followed by
            # `np_clip[:, img_idx, :, :] = img` does for other data types.
            tensor_clip = tensor_clip.permute(1, 0, 2, 3)
            if not isinstance(tensor_clip, torch.FloatTensor):
                tensor_clip = tensor_clip.float()
            if self.div_255:
                tensor_clip = torch.div(tensor_clip, 255)
            return tensor_clip
        else:
            raise TypeError(
                "Expected numpy.ndarray or PIL.Image or torch.Tensor\
            but got list of {0}".format(
                    type(clip[0])
                )
            )

        np_clip = np.zeros([self.channel_nb, len(clip), int(h), int(w)])

        # Convert
        for img_idx, img in enumerate(clip):
            if isinstance(img, np.ndarray):
                pass
            elif isinstance(img, Image.Image):
                img = np.array(img, copy=False)
            else:
                raise TypeError(
                    "Expected numpy.ndarray or PIL.Image\
                but got list of {0}".format(
                        type(clip[0])
                    )
                )
            img = convert_img(img)
            np_clip[:, img_idx, :, :] = img

        if self.numpy:
            if self.div_255:
                np_clip = np_clip / 255.0
            return np_clip

        else:
            tensor_clip = torch.from_numpy(np_clip)

            if not isinstance(tensor_clip, torch.FloatTensor):
                tensor_clip = tensor_clip.float()
            if self.div_255:
                tensor_clip = torch.div(tensor_clip, 255)
            return tensor_clip


# Note this norms data to -1/1
class ClipToTensor_K(object):
    """Convert a list of m (H x W x C) numpy.ndarrays in the range [0, 255]
    to a torch.FloatTensor of shape (C x m x H x W) in the range [0, 1.0]
    """

    def __init__(self, channel_nb=3, div_255=True, numpy=False):
        self.channel_nb = channel_nb
        self.div_255 = div_255
        self.numpy = numpy

    def __call__(self, clip):
        """
        Args: clip (list of numpy.ndarray): clip (list of images)
        to be converted to tensor.
        """
        # Retrieve shape
        if isinstance(clip[0], np.ndarray):
            h, w, ch = clip[0].shape
            assert ch == self.channel_nb, "Got {0} instead of 3 channels".format(ch)
        elif isinstance(clip[0], Image.Image):
            w, h = clip[0].size
        else:
            raise TypeError(
                "Expected numpy.ndarray or PIL.Image\
            but got list of {0}".format(
                    type(clip[0])
                )
            )

        np_clip = np.zeros([self.channel_nb, len(clip), int(h), int(w)])

        # Convert
        for img_idx, img in enumerate(clip):
            if isinstance(img, np.ndarray):
                pass
            elif isinstance(img, Image.Image):
                img = np.array(img, copy=False)
            else:
                raise TypeError(
                    "Expected numpy.ndarray or PIL.Image\
                but got list of {0}".format(
                        type(clip[0])
                    )
                )
            img = convert_img(img)
            np_clip[:, img_idx, :, :] = img
        if self.numpy:
            if self.div_255:
                np_clip = (np_clip - 127.5) / 127.5
            return np_clip

        else:
            tensor_clip = torch.from_numpy(np_clip)

            if not isinstance(tensor_clip, torch.FloatTensor):
                tensor_clip = tensor_clip.float()
            if self.div_255:
                tensor_clip = torch.div(torch.sub(tensor_clip, 127.5), 127.5)
            return tensor_clip


class ToTensor(object):
    """Converts numpy array to tensor"""

    def __call__(self, array):
        tensor = torch.from_numpy(array)
        return tensor