File size: 13,462 Bytes
0e37bb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import os
import pathlib
import warnings
from logging import getLogger
import numpy as np
import pandas as pd
import torch
import torchvision
from decord import VideoReader, cpu
from src.datasets.utils.dataloader import ConcatIndices, MonitoredDataset, NondeterministicDataLoader
from src.datasets.utils.weighted_sampler import DistributedWeightedSampler
_GLOBAL_SEED = 0
logger = getLogger()
def make_videodataset(
data_paths,
batch_size,
frames_per_clip=8,
dataset_fpcs=None,
frame_step=4,
duration=None,
fps=None,
num_clips=1,
random_clip_sampling=True,
allow_clip_overlap=False,
filter_short_videos=False,
filter_long_videos=int(10**9),
transform=None,
shared_transform=None,
rank=0,
world_size=1,
datasets_weights=None,
collator=None,
drop_last=True,
num_workers=10,
pin_mem=True,
persistent_workers=True,
deterministic=True,
log_dir=None,
):
dataset = VideoDataset(
data_paths=data_paths,
datasets_weights=datasets_weights,
frames_per_clip=frames_per_clip,
dataset_fpcs=dataset_fpcs,
duration=duration,
fps=fps,
frame_step=frame_step,
num_clips=num_clips,
random_clip_sampling=random_clip_sampling,
allow_clip_overlap=allow_clip_overlap,
filter_short_videos=filter_short_videos,
filter_long_videos=filter_long_videos,
shared_transform=shared_transform,
transform=transform,
)
log_dir = pathlib.Path(log_dir) if log_dir else None
if log_dir:
log_dir.mkdir(parents=True, exist_ok=True)
# Worker ID will replace '%w'
resource_log_filename = log_dir / f"resource_file_{rank}_%w.csv"
dataset = MonitoredDataset(
dataset=dataset,
log_filename=str(resource_log_filename),
log_interval=10.0,
monitor_interval=5.0,
)
logger.info("VideoDataset dataset created")
if datasets_weights is not None:
dist_sampler = DistributedWeightedSampler(dataset, num_replicas=world_size, rank=rank, shuffle=True)
else:
dist_sampler = torch.utils.data.distributed.DistributedSampler(
dataset, num_replicas=world_size, rank=rank, shuffle=True
)
if deterministic:
data_loader = torch.utils.data.DataLoader(
dataset,
collate_fn=collator,
sampler=dist_sampler,
batch_size=batch_size,
drop_last=drop_last,
pin_memory=pin_mem,
num_workers=num_workers,
persistent_workers=(num_workers > 0) and persistent_workers,
)
else:
data_loader = NondeterministicDataLoader(
dataset,
collate_fn=collator,
sampler=dist_sampler,
batch_size=batch_size,
drop_last=drop_last,
pin_memory=pin_mem,
num_workers=num_workers,
persistent_workers=(num_workers > 0) and persistent_workers,
)
logger.info("VideoDataset unsupervised data loader created")
return dataset, data_loader, dist_sampler
class VideoDataset(torch.utils.data.Dataset):
"""Video classification dataset."""
def __init__(
self,
data_paths,
datasets_weights=None,
frames_per_clip=16,
fps=None,
dataset_fpcs=None,
frame_step=4,
num_clips=1,
transform=None,
shared_transform=None,
random_clip_sampling=True,
allow_clip_overlap=False,
filter_short_videos=False,
filter_long_videos=int(10**9),
duration=None, # duration in seconds
):
self.data_paths = data_paths
self.datasets_weights = datasets_weights
self.frame_step = frame_step
self.num_clips = num_clips
self.transform = transform
self.shared_transform = shared_transform
self.random_clip_sampling = random_clip_sampling
self.allow_clip_overlap = allow_clip_overlap
self.filter_short_videos = filter_short_videos
self.filter_long_videos = filter_long_videos
self.duration = duration
self.fps = fps
if sum([v is not None for v in (fps, duration, frame_step)]) != 1:
raise ValueError(f"Must specify exactly one of either {fps=}, {duration=}, or {frame_step=}.")
if isinstance(data_paths, str):
data_paths = [data_paths]
if dataset_fpcs is None:
self.dataset_fpcs = [frames_per_clip for _ in data_paths]
else:
if len(dataset_fpcs) != len(data_paths):
raise ValueError("Frames per clip not properly specified for NFS data paths")
self.dataset_fpcs = dataset_fpcs
if VideoReader is None:
raise ImportError('Unable to import "decord" which is required to read videos.')
# Load video paths and labels
samples, labels = [], []
self.num_samples_per_dataset = []
for data_path in self.data_paths:
if data_path[-4:] == ".csv":
try:
data = pd.read_csv(data_path, header=None, delimiter=" ")
except pd.errors.ParserError:
# In image captioning datasets where we have space, we use :: as delimiter.
data = pd.read_csv(data_path, header=None, delimiter="::")
samples += list(data.values[:, 0])
labels += list(data.values[:, 1])
num_samples = len(data)
self.num_samples_per_dataset.append(num_samples)
elif data_path[-4:] == ".npy":
data = np.load(data_path, allow_pickle=True)
data = list(map(lambda x: repr(x)[1:-1], data))
samples += data
labels += [0] * len(data)
num_samples = len(data)
self.num_samples_per_dataset.append(len(data))
self.per_dataset_indices = ConcatIndices(self.num_samples_per_dataset)
# [Optional] Weights for each sample to be used by downstream
# weighted video sampler
self.sample_weights = None
if self.datasets_weights is not None:
self.sample_weights = []
for dw, ns in zip(self.datasets_weights, self.num_samples_per_dataset):
self.sample_weights += [dw / ns] * ns
self.samples = samples
self.labels = labels
def __getitem__(self, index):
sample = self.samples[index]
loaded_sample = False
# Keep trying to load videos until you find a valid sample
while not loaded_sample:
if not isinstance(sample, str):
logger.warning("Invalid sample.")
else:
if sample.split(".")[-1].lower() in ("jpg", "png", "jpeg"):
loaded_sample = self.get_item_image(index)
else:
loaded_sample = self.get_item_video(index)
if not loaded_sample:
index = np.random.randint(self.__len__())
sample = self.samples[index]
return loaded_sample
def get_item_video(self, index):
sample = self.samples[index]
dataset_idx, _ = self.per_dataset_indices[index]
frames_per_clip = self.dataset_fpcs[dataset_idx]
buffer, clip_indices = self.loadvideo_decord(sample, frames_per_clip) # [T H W 3]
loaded_video = len(buffer) > 0
if not loaded_video:
return
# Label/annotations for video
label = self.labels[index]
def split_into_clips(video):
"""Split video into a list of clips"""
fpc = frames_per_clip
nc = self.num_clips
return [video[i * fpc : (i + 1) * fpc] for i in range(nc)]
# Parse video into frames & apply data augmentations
if self.shared_transform is not None:
buffer = self.shared_transform(buffer)
buffer = split_into_clips(buffer)
if self.transform is not None:
buffer = [self.transform(clip) for clip in buffer]
return buffer, label, clip_indices
def get_item_image(self, index):
sample = self.samples[index]
dataset_idx, _ = self.per_dataset_indices[index]
fpc = self.dataset_fpcs[dataset_idx]
try:
image_tensor = torchvision.io.read_image(path=sample, mode=torchvision.io.ImageReadMode.RGB)
except Exception:
return
label = self.labels[index]
clip_indices = [np.arange(start=0, stop=fpc, dtype=np.int32)]
# Expanding the input image [3, H, W] ==> [T, 3, H, W]
buffer = image_tensor.unsqueeze(dim=0).repeat((fpc, 1, 1, 1))
buffer = buffer.permute((0, 2, 3, 1)) # [T, 3, H, W] ==> [T H W 3]
if self.shared_transform is not None:
# Technically we can have only transform, doing this just for the sake of consistency with videos.
buffer = self.shared_transform(buffer)
if self.transform is not None:
buffer = [self.transform(buffer)]
return buffer, label, clip_indices
def loadvideo_decord(self, sample, fpc):
"""Load video content using Decord"""
fname = sample
if not os.path.exists(fname):
warnings.warn(f"video path not found {fname=}")
return [], None
_fsize = os.path.getsize(fname)
if _fsize > self.filter_long_videos:
warnings.warn(f"skipping long video of size {_fsize=} (bytes)")
return [], None
try:
vr = VideoReader(fname, num_threads=-1, ctx=cpu(0))
except Exception:
return [], None
fstp = self.frame_step
if self.duration is not None or self.fps is not None:
try:
video_fps = math.ceil(vr.get_avg_fps())
except Exception as e:
logger.warning(e)
if self.duration is not None:
assert self.fps is None
fstp = int(self.duration * video_fps / fpc)
else:
assert self.duration is None
fstp = video_fps // self.fps
assert fstp is not None and fstp > 0
clip_len = int(fpc * fstp)
if self.filter_short_videos and len(vr) < clip_len:
warnings.warn(f"skipping video of length {len(vr)}")
return [], None
vr.seek(0) # Go to start of video before sampling frames
# Partition video into equal sized segments and sample each clip
# from a different segment
partition_len = len(vr) // self.num_clips
all_indices, clip_indices = [], []
for i in range(self.num_clips):
if partition_len > clip_len:
# If partition_len > clip len, then sample a random window of
# clip_len frames within the segment
end_indx = clip_len
if self.random_clip_sampling:
end_indx = np.random.randint(clip_len, partition_len)
start_indx = end_indx - clip_len
indices = np.linspace(start_indx, end_indx, num=fpc)
indices = np.clip(indices, start_indx, end_indx - 1).astype(np.int64)
# --
indices = indices + i * partition_len
else:
# If partition overlap not allowed and partition_len < clip_len
# then repeatedly append the last frame in the segment until
# we reach the desired clip length
if not self.allow_clip_overlap:
indices = np.linspace(0, partition_len, num=partition_len // fstp)
indices = np.concatenate(
(
indices,
np.ones(fpc - partition_len // fstp) * partition_len,
)
)
indices = np.clip(indices, 0, partition_len - 1).astype(np.int64)
# --
indices = indices + i * partition_len
# If partition overlap is allowed and partition_len < clip_len
# then start_indx of segment i+1 will lie within segment i
else:
sample_len = min(clip_len, len(vr)) - 1
indices = np.linspace(0, sample_len, num=sample_len // fstp)
indices = np.concatenate(
(
indices,
np.ones(fpc - sample_len // fstp) * sample_len,
)
)
indices = np.clip(indices, 0, sample_len - 1).astype(np.int64)
# --
clip_step = 0
if len(vr) > clip_len:
clip_step = (len(vr) - clip_len) // (self.num_clips - 1)
indices = indices + i * clip_step
clip_indices.append(indices)
all_indices.extend(list(indices))
buffer = vr.get_batch(all_indices).asnumpy()
return buffer, clip_indices
def __len__(self):
return len(self.samples)
|