File size: 9,202 Bytes
0e37bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from functools import partial

import torch
import torch.nn as nn

from src.masks.utils import apply_masks
from src.models.utils.modules import Block
from src.models.utils.pos_embs import get_2d_sincos_pos_embed, get_3d_sincos_pos_embed
from src.utils.tensors import repeat_interleave_batch, trunc_normal_


class VisionTransformerPredictor(nn.Module):
    """Vision Transformer"""

    def __init__(
        self,
        img_size=(224, 224),
        patch_size=16,
        num_frames=1,
        tubelet_size=2,
        embed_dim=768,
        predictor_embed_dim=384,
        depth=6,
        num_heads=12,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.0,
        norm_layer=nn.LayerNorm,
        init_std=0.02,
        uniform_power=False,
        use_mask_tokens=False,
        num_mask_tokens=2,
        zero_init_mask_tokens=True,
        use_silu=False,
        wide_silu=True,
        use_activation_checkpointing=False,
        return_all_tokens=False,
        chop_last_n_tokens=0,
        use_rope=False,
        **kwargs
    ):
        super().__init__()
        self.return_all_tokens = return_all_tokens
        self.chop_last_n_tokens = chop_last_n_tokens

        # Map input to predictor dimension
        self.predictor_embed = nn.Linear(embed_dim, predictor_embed_dim, bias=True)

        # Mask tokens
        self.mask_tokens = None
        self.num_mask_tokens = 0
        if use_mask_tokens:
            self.num_mask_tokens = num_mask_tokens
            self.mask_tokens = nn.ParameterList(
                [nn.Parameter(torch.zeros(1, 1, predictor_embed_dim)) for i in range(num_mask_tokens)]
            )

        # Determine positional embedding
        if type(img_size) is int:
            img_size = (img_size, img_size)
        self.img_height, self.img_width = img_size
        self.patch_size = patch_size
        # --
        self.num_frames = num_frames
        self.tubelet_size = tubelet_size
        self.is_video = num_frames > 1

        self.grid_height = img_size[0] // self.patch_size
        self.grid_width = img_size[1] // self.patch_size
        self.grid_depth = num_frames // self.tubelet_size
        self.use_activation_checkpointing = use_activation_checkpointing

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule

        if self.is_video:
            self.num_patches = num_patches = (
                (num_frames // tubelet_size) * (img_size[0] // patch_size) * (img_size[1] // patch_size)
            )
        else:
            self.num_patches = num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size)
        # Position embedding
        self.uniform_power = uniform_power

        self.predictor_pos_embed = None
        if not use_rope:
            self.predictor_pos_embed = nn.Parameter(
                torch.zeros(1, num_patches, predictor_embed_dim), requires_grad=False
            )

        # Attention Blocks
        self.use_rope = use_rope
        self.predictor_blocks = nn.ModuleList(
            [
                Block(
                    use_rope=use_rope,
                    grid_size=self.grid_height,
                    grid_depth=self.grid_depth,
                    dim=predictor_embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    act_layer=nn.SiLU if use_silu else nn.GELU,
                    wide_silu=wide_silu,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                )
                for i in range(depth)
            ]
        )

        # Normalize & project back to input dimension
        self.predictor_norm = norm_layer(predictor_embed_dim)
        self.predictor_proj = nn.Linear(predictor_embed_dim, embed_dim, bias=True)

        # ------ initialize weights
        if self.predictor_pos_embed is not None:
            self._init_pos_embed(self.predictor_pos_embed.data)  # sincos pos-embed
        self.init_std = init_std
        if not zero_init_mask_tokens:
            for mt in self.mask_tokens:
                trunc_normal_(mt, std=init_std)
        self.apply(self._init_weights)
        self._rescale_blocks()

    def _init_pos_embed(self, pos_embed):
        embed_dim = pos_embed.size(-1)
        grid_size = self.img_height // self.patch_size  # TODO: update; currently assumes square input
        if self.is_video:
            grid_depth = self.num_frames // self.tubelet_size
            sincos = get_3d_sincos_pos_embed(
                embed_dim, grid_size, grid_depth, cls_token=False, uniform_power=self.uniform_power
            )
        else:
            sincos = get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False)
        pos_embed.copy_(torch.from_numpy(sincos).float().unsqueeze(0))

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=self.init_std)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def _rescale_blocks(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.predictor_blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    def forward(self, x, masks_x, masks_y, mask_index=1, has_cls=False):
        """
        :param x: context tokens
        :param masks_x: indices of context tokens in input
        :params masks_y: indices of target tokens in input
        """
        assert (masks_x is not None) and (masks_y is not None), "Cannot run predictor without mask indices"
        if not isinstance(masks_x, list):
            masks_x = [masks_x]
        if not isinstance(masks_y, list):
            masks_y = [masks_y]

        # Batch Size
        B = len(x) // len(masks_x)

        # Map context tokens to pedictor dimensions
        x = self.predictor_embed(x)
        if has_cls:
            x_cls = x[:, :1, :]
            x = x[:, 1:, :]
        _, N_ctxt, D = x.shape

        # Add positional embedding to ctxt tokens
        if not self.use_rope:
            x_pos_embed = self.predictor_pos_embed.repeat(B, 1, 1)
            x += apply_masks(x_pos_embed, masks_x)

        # Make target tokens
        mask_index = mask_index % self.num_mask_tokens
        pred_tokens = self.mask_tokens[mask_index]
        pred_tokens = pred_tokens.repeat(B, self.num_patches, 1)
        pred_tokens = apply_masks(pred_tokens, masks_y)
        # -- add pos embed
        if not self.use_rope:
            pos_embs = self.predictor_pos_embed.repeat(B, 1, 1)
            pos_embs = apply_masks(pos_embs, masks_y)
            pos_embs = repeat_interleave_batch(pos_embs, B, repeat=len(masks_x))
            pred_tokens += pos_embs

        # Concatenate context & target tokens
        x = x.repeat(len(masks_x), 1, 1)
        x = torch.cat([x, pred_tokens], dim=1)

        # Positions of context & target tokens
        masks_x = torch.cat(masks_x, dim=0)
        masks_y = torch.cat(masks_y, dim=0)
        masks = torch.cat([masks_x, masks_y], dim=1)

        # Put tokens in sorted order
        argsort = torch.argsort(masks, dim=1)  # [B, N]
        masks = torch.stack([masks[i, row] for i, row in enumerate(argsort)], dim=0)
        x = torch.stack([x[i, row, :] for i, row in enumerate(argsort)], dim=0)

        # Remove the last n tokens of sorted sequence before processing
        if self.chop_last_n_tokens > 0:
            x = x[:, : -self.chop_last_n_tokens]
            masks = masks[:, : -self.chop_last_n_tokens]

        if has_cls:
            x = torch.cat([x_cls, x], dim=1)

        # Fwd prop
        for i, blk in enumerate(self.predictor_blocks):
            if self.use_activation_checkpointing:
                x = torch.utils.checkpoint.checkpoint(blk, x, masks, None, use_reentrant=False)
            else:
                x = blk(x, mask=masks, attn_mask=None)
        x = self.predictor_norm(x)

        if has_cls:
            x = x[:, 1:, :]

        # Return output corresponding to target tokens
        if not self.return_all_tokens:
            reverse_argsort = torch.argsort(argsort, dim=1)  # [B, N]
            x = torch.stack([x[i, row, :] for i, row in enumerate(reverse_argsort)], dim=0)
            x = x[:, N_ctxt:]

        x = self.predictor_proj(x)

        return x


def vit_predictor(**kwargs):
    model = VisionTransformerPredictor(
        mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs
    )
    return model