File size: 1,832 Bytes
0e37bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from logging import getLogger

import torch

logger = getLogger()


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        lower = norm_cdf((a - mean) / std)
        upper = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [lower, upper], then translate to
        # [2*lower-1, 2*upper-1].
        tensor.uniform_(2 * lower - 1, 2 * upper - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.0))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
    # type: (Tensor, float, float, float, float) -> Tensor
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


def repeat_interleave_batch(x, B, repeat):
    N = len(x) // B
    x = torch.cat([torch.cat([x[i * B : (i + 1) * B] for _ in range(repeat)], dim=0) for i in range(N)], dim=0)
    return x