jingwwu commited on
Commit
b074e29
·
verified ·
1 Parent(s): 0049525

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/teaser.jpg filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ ## NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale
5
+
6
+ [Homepage](https://stepfun.ai/research/en/nextstep-1) 
7
+ | [GitHub](https://github.com/stepfun-ai/NextStep-1) 
8
+ | [Paper](https://arxiv.org/abs/2508.10711) 
9
+
10
+ We introduce **NextStep-1**, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives.
11
+ **NextStep-1** achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis.
12
+
13
+ <div align='center'>
14
+ <img src="assets/teaser.jpg" class="interpolation-image" alt="arch." width="100%" />
15
+ </div>
16
+
17
+ ## Environment Setup
18
+
19
+ To avoid potential errors when loading and running your models, we recommend using the following settings:
20
+
21
+ ```shell
22
+ conda create -n nextstep python=3.11 -y
23
+ conda activate nextstep
24
+
25
+ pip install uv # optional
26
+
27
+ # please check and download requirements.txt in this repo
28
+ uv pip install -r requirements.txt
29
+
30
+ # diffusers==0.34.0
31
+ # einops==0.8.1
32
+ # gradio==5.42.0
33
+ # loguru==0.7.3
34
+ # numpy==1.26.4
35
+ # omegaconf==2.3.0
36
+ # Pillow==11.0.0
37
+ # Requests==2.32.4
38
+ # safetensors==0.5.3
39
+ # tabulate==0.9.0
40
+ # torch==2.5.1
41
+ # torchvision==0.20.1
42
+ # tqdm==4.67.1
43
+ # transformers==4.55.0
44
+ ```
45
+
46
+ ## Usage
47
+
48
+ ```python
49
+ import torch
50
+ from transformers import AutoTokenizer, AutoModel
51
+ from models.gen_pipeline import NextStepPipeline
52
+
53
+ HF_HUB = "stepfun-ai/NextStep-1-Large-Pretrain"
54
+
55
+ # load model and tokenizer
56
+ tokenizer = AutoTokenizer.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True)
57
+ model = AutoModel.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True)
58
+ pipeline = NextStepPipeline(tokenizer=tokenizer, model=model).to(device="cuda", dtype=torch.bfloat16)
59
+
60
+ # set prompts
61
+ positive_prompt = "masterpiece, film grained, best quality."
62
+ negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry."
63
+ example_prompt = "A realistic photograph of a wall with \"NextStep-1.1 is coming\" prominently displayed"
64
+
65
+ # generate image from text
66
+ IMG_SIZE = 512
67
+ image = pipeline.generate_image(
68
+ example_prompt,
69
+ hw=(IMG_SIZE, IMG_SIZE),
70
+ num_images_per_caption=1,
71
+ positive_prompt=positive_prompt,
72
+ negative_prompt=negative_prompt,
73
+ cfg=7.5,
74
+ cfg_img=1.0,
75
+ cfg_schedule="constant",
76
+ use_norm=False,
77
+ num_sampling_steps=28,
78
+ timesteps_shift=1.0,
79
+ seed=3407,
80
+ )[0]
81
+ image.save("./assets/output.jpg")
82
+ ```
83
+
84
+ ## Citation
85
+
86
+ If you find NextStep useful for your research and applications, please consider starring this repository and citing:
87
+
88
+ ```bibtex
89
+ @misc{nextstep_1,
90
+ title={NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale},
91
+ author={NextStep Team},
92
+ year={2025},
93
+ url={https://github.com/stepfun-ai/NextStep-1},
94
+ }
95
+ ```
added_tokens.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|begin_of_image|>": 151667,
5
+ "<|begin_of_prompt_refinement|>": 151670,
6
+ "<|begin_of_thinking|>": 151672,
7
+ "<|box_end|>": 151649,
8
+ "<|box_start|>": 151648,
9
+ "<|end_of_image|>": 151668,
10
+ "<|end_of_prompt_refinement|>": 151671,
11
+ "<|end_of_thinking|>": 151673,
12
+ "<|endoftext|>": 151643,
13
+ "<|file_sep|>": 151664,
14
+ "<|fim_middle|>": 151660,
15
+ "<|fim_pad|>": 151662,
16
+ "<|fim_prefix|>": 151659,
17
+ "<|fim_suffix|>": 151661,
18
+ "<|im_end|>": 151645,
19
+ "<|im_start|>": 151644,
20
+ "<|image_area|>": 151666,
21
+ "<|image_pad|>": 151655,
22
+ "<|image_placeholder|>": 151669,
23
+ "<|object_ref_end|>": 151647,
24
+ "<|object_ref_start|>": 151646,
25
+ "<|quad_end|>": 151651,
26
+ "<|quad_start|>": 151650,
27
+ "<|repo_name|>": 151663,
28
+ "<|video_pad|>": 151656,
29
+ "<|vision_end|>": 151653,
30
+ "<|vision_pad|>": 151654,
31
+ "<|vision_start|>": 151652,
32
+ "[PAD]": 151665
33
+ }
assets/teaser.jpg ADDED

Git LFS Details

  • SHA256: f761f03757027a2a13ff7b6f9f5301612420a66a71adadc281da16f0e5389b0f
  • Pointer size: 132 Bytes
  • Size of remote file: 2.88 MB
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "auto_map":{
7
+ "AutoConfig": "models/config.NextStepConfig",
8
+ "AutoModel": "models/nextstep_model.NextStep"
9
+ },
10
+ "attention_bias": true,
11
+ "attention_dropout": 0.0,
12
+ "base_image_grid_size": 32,
13
+ "boi": 151667,
14
+ "bos_token_id": 151643,
15
+ "eoi": 151668,
16
+ "eos_token_id": 151643,
17
+ "fm_head_batch_mul": 4,
18
+ "fm_head_dim": 1536,
19
+ "fm_head_layers": 12,
20
+ "head_dim": 128,
21
+ "hidden_act": "silu",
22
+ "hidden_size": 5120,
23
+ "im_loss_weight": 1.0,
24
+ "image_placeholder_id": 151669,
25
+ "initializer_range": 0.02,
26
+ "intermediate_size": 13824,
27
+ "latent_channels": 16,
28
+ "latent_patch_size": 2,
29
+ "latent_size": 64,
30
+ "lm_loss_weight": 0.01,
31
+ "max_position_embeddings": 131072,
32
+ "max_window_layers": 48,
33
+ "mlp_bias": false,
34
+ "model_type": "nextstep",
35
+ "num_attention_heads": 40,
36
+ "num_hidden_layers": 48,
37
+ "num_key_value_heads": 8,
38
+ "o_attention_bias": false,
39
+ "pad_token_id_added": 151665,
40
+ "pretraining_tp": 1,
41
+ "rms_norm_eps": 1e-05,
42
+ "rope_scaling": null,
43
+ "rope_theta": 1000000.0,
44
+ "sliding_window": 131072,
45
+ "tie_word_embeddings": false,
46
+ "torch_dtype": "bfloat16",
47
+ "transformers_version": "4.55.0",
48
+ "use_cache": true,
49
+ "use_gen_pos_embed": false,
50
+ "use_sliding_window": false,
51
+ "vae_name_or_path": "./vae",
52
+ "vocab_size": 152064
53
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,698 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29907628160
4
+ },
5
+ "weight_map": {
6
+ "embed_tokens.weight": "pytorch-model-00004-of-00004.safetensors",
7
+ "image_head.net.cond_embed.bias": "pytorch-model-00003-of-00004.safetensors",
8
+ "image_head.net.cond_embed.weight": "pytorch-model-00003-of-00004.safetensors",
9
+ "image_head.net.final_layer.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
10
+ "image_head.net.final_layer.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
11
+ "image_head.net.final_layer.linear.bias": "pytorch-model-00003-of-00004.safetensors",
12
+ "image_head.net.final_layer.linear.weight": "pytorch-model-00003-of-00004.safetensors",
13
+ "image_head.net.input_proj.bias": "pytorch-model-00003-of-00004.safetensors",
14
+ "image_head.net.input_proj.weight": "pytorch-model-00003-of-00004.safetensors",
15
+ "image_head.net.res_blocks.0.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
16
+ "image_head.net.res_blocks.0.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
17
+ "image_head.net.res_blocks.0.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
18
+ "image_head.net.res_blocks.0.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
19
+ "image_head.net.res_blocks.0.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
20
+ "image_head.net.res_blocks.0.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
21
+ "image_head.net.res_blocks.0.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
22
+ "image_head.net.res_blocks.0.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
23
+ "image_head.net.res_blocks.1.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
24
+ "image_head.net.res_blocks.1.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
25
+ "image_head.net.res_blocks.1.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
26
+ "image_head.net.res_blocks.1.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
27
+ "image_head.net.res_blocks.1.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
28
+ "image_head.net.res_blocks.1.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
29
+ "image_head.net.res_blocks.1.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
30
+ "image_head.net.res_blocks.1.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
31
+ "image_head.net.res_blocks.10.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
32
+ "image_head.net.res_blocks.10.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
33
+ "image_head.net.res_blocks.10.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
34
+ "image_head.net.res_blocks.10.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
35
+ "image_head.net.res_blocks.10.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
36
+ "image_head.net.res_blocks.10.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
37
+ "image_head.net.res_blocks.10.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
38
+ "image_head.net.res_blocks.10.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
39
+ "image_head.net.res_blocks.11.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
40
+ "image_head.net.res_blocks.11.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
41
+ "image_head.net.res_blocks.11.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
42
+ "image_head.net.res_blocks.11.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
43
+ "image_head.net.res_blocks.11.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
44
+ "image_head.net.res_blocks.11.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
45
+ "image_head.net.res_blocks.11.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
46
+ "image_head.net.res_blocks.11.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
47
+ "image_head.net.res_blocks.2.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
48
+ "image_head.net.res_blocks.2.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
49
+ "image_head.net.res_blocks.2.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
50
+ "image_head.net.res_blocks.2.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
51
+ "image_head.net.res_blocks.2.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
52
+ "image_head.net.res_blocks.2.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
53
+ "image_head.net.res_blocks.2.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
54
+ "image_head.net.res_blocks.2.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
55
+ "image_head.net.res_blocks.3.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
56
+ "image_head.net.res_blocks.3.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
57
+ "image_head.net.res_blocks.3.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
58
+ "image_head.net.res_blocks.3.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
59
+ "image_head.net.res_blocks.3.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
60
+ "image_head.net.res_blocks.3.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
61
+ "image_head.net.res_blocks.3.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
62
+ "image_head.net.res_blocks.3.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
63
+ "image_head.net.res_blocks.4.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
64
+ "image_head.net.res_blocks.4.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
65
+ "image_head.net.res_blocks.4.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
66
+ "image_head.net.res_blocks.4.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
67
+ "image_head.net.res_blocks.4.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
68
+ "image_head.net.res_blocks.4.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
69
+ "image_head.net.res_blocks.4.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
70
+ "image_head.net.res_blocks.4.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
71
+ "image_head.net.res_blocks.5.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
72
+ "image_head.net.res_blocks.5.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
73
+ "image_head.net.res_blocks.5.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
74
+ "image_head.net.res_blocks.5.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
75
+ "image_head.net.res_blocks.5.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
76
+ "image_head.net.res_blocks.5.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
77
+ "image_head.net.res_blocks.5.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
78
+ "image_head.net.res_blocks.5.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
79
+ "image_head.net.res_blocks.6.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
80
+ "image_head.net.res_blocks.6.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
81
+ "image_head.net.res_blocks.6.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
82
+ "image_head.net.res_blocks.6.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
83
+ "image_head.net.res_blocks.6.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
84
+ "image_head.net.res_blocks.6.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
85
+ "image_head.net.res_blocks.6.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
86
+ "image_head.net.res_blocks.6.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
87
+ "image_head.net.res_blocks.7.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
88
+ "image_head.net.res_blocks.7.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
89
+ "image_head.net.res_blocks.7.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
90
+ "image_head.net.res_blocks.7.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
91
+ "image_head.net.res_blocks.7.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
92
+ "image_head.net.res_blocks.7.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
93
+ "image_head.net.res_blocks.7.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
94
+ "image_head.net.res_blocks.7.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
95
+ "image_head.net.res_blocks.8.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
96
+ "image_head.net.res_blocks.8.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
97
+ "image_head.net.res_blocks.8.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
98
+ "image_head.net.res_blocks.8.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
99
+ "image_head.net.res_blocks.8.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
100
+ "image_head.net.res_blocks.8.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
101
+ "image_head.net.res_blocks.8.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
102
+ "image_head.net.res_blocks.8.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
103
+ "image_head.net.res_blocks.9.adaLN_modulation.1.bias": "pytorch-model-00003-of-00004.safetensors",
104
+ "image_head.net.res_blocks.9.adaLN_modulation.1.weight": "pytorch-model-00003-of-00004.safetensors",
105
+ "image_head.net.res_blocks.9.in_ln.bias": "pytorch-model-00003-of-00004.safetensors",
106
+ "image_head.net.res_blocks.9.in_ln.weight": "pytorch-model-00003-of-00004.safetensors",
107
+ "image_head.net.res_blocks.9.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
108
+ "image_head.net.res_blocks.9.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
109
+ "image_head.net.res_blocks.9.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
110
+ "image_head.net.res_blocks.9.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
111
+ "image_head.net.time_embed.mlp.0.bias": "pytorch-model-00003-of-00004.safetensors",
112
+ "image_head.net.time_embed.mlp.0.weight": "pytorch-model-00003-of-00004.safetensors",
113
+ "image_head.net.time_embed.mlp.2.bias": "pytorch-model-00003-of-00004.safetensors",
114
+ "image_head.net.time_embed.mlp.2.weight": "pytorch-model-00003-of-00004.safetensors",
115
+ "image_in_projector.bias": "pytorch-model-00003-of-00004.safetensors",
116
+ "image_in_projector.weight": "pytorch-model-00003-of-00004.safetensors",
117
+ "image_out_projector.bias": "pytorch-model-00003-of-00004.safetensors",
118
+ "image_out_projector.weight": "pytorch-model-00003-of-00004.safetensors",
119
+ "layers.0.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
120
+ "layers.0.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
121
+ "layers.0.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
122
+ "layers.0.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
123
+ "layers.0.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
124
+ "layers.0.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
125
+ "layers.0.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
126
+ "layers.0.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
127
+ "layers.0.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
128
+ "layers.0.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
129
+ "layers.0.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
130
+ "layers.0.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
131
+ "layers.1.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
132
+ "layers.1.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
133
+ "layers.1.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
134
+ "layers.1.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
135
+ "layers.1.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
136
+ "layers.1.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
137
+ "layers.1.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
138
+ "layers.1.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
139
+ "layers.1.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
140
+ "layers.1.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
141
+ "layers.1.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
142
+ "layers.1.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
143
+ "layers.10.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
144
+ "layers.10.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
145
+ "layers.10.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
146
+ "layers.10.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
147
+ "layers.10.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
148
+ "layers.10.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
149
+ "layers.10.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
150
+ "layers.10.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
151
+ "layers.10.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
152
+ "layers.10.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
153
+ "layers.10.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
154
+ "layers.10.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
155
+ "layers.11.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
156
+ "layers.11.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
157
+ "layers.11.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
158
+ "layers.11.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
159
+ "layers.11.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
160
+ "layers.11.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
161
+ "layers.11.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
162
+ "layers.11.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
163
+ "layers.11.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
164
+ "layers.11.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
165
+ "layers.11.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
166
+ "layers.11.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
167
+ "layers.12.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
168
+ "layers.12.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
169
+ "layers.12.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
170
+ "layers.12.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
171
+ "layers.12.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
172
+ "layers.12.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
173
+ "layers.12.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
174
+ "layers.12.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
175
+ "layers.12.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
176
+ "layers.12.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
177
+ "layers.12.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
178
+ "layers.12.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
179
+ "layers.13.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
180
+ "layers.13.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
181
+ "layers.13.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
182
+ "layers.13.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
183
+ "layers.13.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
184
+ "layers.13.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
185
+ "layers.13.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
186
+ "layers.13.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
187
+ "layers.13.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
188
+ "layers.13.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
189
+ "layers.13.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
190
+ "layers.13.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
191
+ "layers.14.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
192
+ "layers.14.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
193
+ "layers.14.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
194
+ "layers.14.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
195
+ "layers.14.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
196
+ "layers.14.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
197
+ "layers.14.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
198
+ "layers.14.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
199
+ "layers.14.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
200
+ "layers.14.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
201
+ "layers.14.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
202
+ "layers.14.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
203
+ "layers.15.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
204
+ "layers.15.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
205
+ "layers.15.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
206
+ "layers.15.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
207
+ "layers.15.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
208
+ "layers.15.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
209
+ "layers.15.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
210
+ "layers.15.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
211
+ "layers.15.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
212
+ "layers.15.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
213
+ "layers.15.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
214
+ "layers.15.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
215
+ "layers.16.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
216
+ "layers.16.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
217
+ "layers.16.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
218
+ "layers.16.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
219
+ "layers.16.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
220
+ "layers.16.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
221
+ "layers.16.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
222
+ "layers.16.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
223
+ "layers.16.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
224
+ "layers.16.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
225
+ "layers.16.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
226
+ "layers.16.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
227
+ "layers.17.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
228
+ "layers.17.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
229
+ "layers.17.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
230
+ "layers.17.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
231
+ "layers.17.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
232
+ "layers.17.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
233
+ "layers.17.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
234
+ "layers.17.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
235
+ "layers.17.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
236
+ "layers.17.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
237
+ "layers.17.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
238
+ "layers.17.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
239
+ "layers.18.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
240
+ "layers.18.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
241
+ "layers.18.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
242
+ "layers.18.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
243
+ "layers.18.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
244
+ "layers.18.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
245
+ "layers.18.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
246
+ "layers.18.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
247
+ "layers.18.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
248
+ "layers.18.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
249
+ "layers.18.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
250
+ "layers.18.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
251
+ "layers.19.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
252
+ "layers.19.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
253
+ "layers.19.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
254
+ "layers.19.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
255
+ "layers.19.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
256
+ "layers.19.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
257
+ "layers.19.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
258
+ "layers.19.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
259
+ "layers.19.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
260
+ "layers.19.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
261
+ "layers.19.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
262
+ "layers.19.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
263
+ "layers.2.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
264
+ "layers.2.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
265
+ "layers.2.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
266
+ "layers.2.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
267
+ "layers.2.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
268
+ "layers.2.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
269
+ "layers.2.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
270
+ "layers.2.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
271
+ "layers.2.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
272
+ "layers.2.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
273
+ "layers.2.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
274
+ "layers.2.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
275
+ "layers.20.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
276
+ "layers.20.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
277
+ "layers.20.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
278
+ "layers.20.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
279
+ "layers.20.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
280
+ "layers.20.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
281
+ "layers.20.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
282
+ "layers.20.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
283
+ "layers.20.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
284
+ "layers.20.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
285
+ "layers.20.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
286
+ "layers.20.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
287
+ "layers.21.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
288
+ "layers.21.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
289
+ "layers.21.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
290
+ "layers.21.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
291
+ "layers.21.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
292
+ "layers.21.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
293
+ "layers.21.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
294
+ "layers.21.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
295
+ "layers.21.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
296
+ "layers.21.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
297
+ "layers.21.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
298
+ "layers.21.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
299
+ "layers.22.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
300
+ "layers.22.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
301
+ "layers.22.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
302
+ "layers.22.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
303
+ "layers.22.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
304
+ "layers.22.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
305
+ "layers.22.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
306
+ "layers.22.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
307
+ "layers.22.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
308
+ "layers.22.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
309
+ "layers.22.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
310
+ "layers.22.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
311
+ "layers.23.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
312
+ "layers.23.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
313
+ "layers.23.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
314
+ "layers.23.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
315
+ "layers.23.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
316
+ "layers.23.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
317
+ "layers.23.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
318
+ "layers.23.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
319
+ "layers.23.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
320
+ "layers.23.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
321
+ "layers.23.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
322
+ "layers.23.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
323
+ "layers.24.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
324
+ "layers.24.mlp.down_proj.weight": "pytorch-model-00001-of-00004.safetensors",
325
+ "layers.24.mlp.gate_proj.weight": "pytorch-model-00001-of-00004.safetensors",
326
+ "layers.24.mlp.up_proj.weight": "pytorch-model-00001-of-00004.safetensors",
327
+ "layers.24.post_attention_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
328
+ "layers.24.self_attn.k_proj.bias": "pytorch-model-00001-of-00004.safetensors",
329
+ "layers.24.self_attn.k_proj.weight": "pytorch-model-00001-of-00004.safetensors",
330
+ "layers.24.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
331
+ "layers.24.self_attn.q_proj.bias": "pytorch-model-00001-of-00004.safetensors",
332
+ "layers.24.self_attn.q_proj.weight": "pytorch-model-00001-of-00004.safetensors",
333
+ "layers.24.self_attn.v_proj.bias": "pytorch-model-00001-of-00004.safetensors",
334
+ "layers.24.self_attn.v_proj.weight": "pytorch-model-00001-of-00004.safetensors",
335
+ "layers.25.input_layernorm.weight": "pytorch-model-00001-of-00004.safetensors",
336
+ "layers.25.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
337
+ "layers.25.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
338
+ "layers.25.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
339
+ "layers.25.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
340
+ "layers.25.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
341
+ "layers.25.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
342
+ "layers.25.self_attn.o_proj.weight": "pytorch-model-00001-of-00004.safetensors",
343
+ "layers.25.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
344
+ "layers.25.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
345
+ "layers.25.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
346
+ "layers.25.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
347
+ "layers.26.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
348
+ "layers.26.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
349
+ "layers.26.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
350
+ "layers.26.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
351
+ "layers.26.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
352
+ "layers.26.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
353
+ "layers.26.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
354
+ "layers.26.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
355
+ "layers.26.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
356
+ "layers.26.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
357
+ "layers.26.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
358
+ "layers.26.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
359
+ "layers.27.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
360
+ "layers.27.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
361
+ "layers.27.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
362
+ "layers.27.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
363
+ "layers.27.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
364
+ "layers.27.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
365
+ "layers.27.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
366
+ "layers.27.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
367
+ "layers.27.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
368
+ "layers.27.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
369
+ "layers.27.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
370
+ "layers.27.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
371
+ "layers.28.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
372
+ "layers.28.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
373
+ "layers.28.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
374
+ "layers.28.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
375
+ "layers.28.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
376
+ "layers.28.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
377
+ "layers.28.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
378
+ "layers.28.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
379
+ "layers.28.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
380
+ "layers.28.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
381
+ "layers.28.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
382
+ "layers.28.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
383
+ "layers.29.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
384
+ "layers.29.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
385
+ "layers.29.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
386
+ "layers.29.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
387
+ "layers.29.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
388
+ "layers.29.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
389
+ "layers.29.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
390
+ "layers.29.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
391
+ "layers.29.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
392
+ "layers.29.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
393
+ "layers.29.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
394
+ "layers.29.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
395
+ "layers.3.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
396
+ "layers.3.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
397
+ "layers.3.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
398
+ "layers.3.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
399
+ "layers.3.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
400
+ "layers.3.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
401
+ "layers.3.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
402
+ "layers.3.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
403
+ "layers.3.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
404
+ "layers.3.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
405
+ "layers.3.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
406
+ "layers.3.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
407
+ "layers.30.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
408
+ "layers.30.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
409
+ "layers.30.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
410
+ "layers.30.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
411
+ "layers.30.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
412
+ "layers.30.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
413
+ "layers.30.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
414
+ "layers.30.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
415
+ "layers.30.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
416
+ "layers.30.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
417
+ "layers.30.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
418
+ "layers.30.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
419
+ "layers.31.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
420
+ "layers.31.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
421
+ "layers.31.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
422
+ "layers.31.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
423
+ "layers.31.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
424
+ "layers.31.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
425
+ "layers.31.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
426
+ "layers.31.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
427
+ "layers.31.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
428
+ "layers.31.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
429
+ "layers.31.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
430
+ "layers.31.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
431
+ "layers.32.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
432
+ "layers.32.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
433
+ "layers.32.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
434
+ "layers.32.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
435
+ "layers.32.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
436
+ "layers.32.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
437
+ "layers.32.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
438
+ "layers.32.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
439
+ "layers.32.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
440
+ "layers.32.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
441
+ "layers.32.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
442
+ "layers.32.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
443
+ "layers.33.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
444
+ "layers.33.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
445
+ "layers.33.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
446
+ "layers.33.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
447
+ "layers.33.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
448
+ "layers.33.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
449
+ "layers.33.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
450
+ "layers.33.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
451
+ "layers.33.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
452
+ "layers.33.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
453
+ "layers.33.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
454
+ "layers.33.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
455
+ "layers.34.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
456
+ "layers.34.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
457
+ "layers.34.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
458
+ "layers.34.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
459
+ "layers.34.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
460
+ "layers.34.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
461
+ "layers.34.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
462
+ "layers.34.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
463
+ "layers.34.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
464
+ "layers.34.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
465
+ "layers.34.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
466
+ "layers.34.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
467
+ "layers.35.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
468
+ "layers.35.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
469
+ "layers.35.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
470
+ "layers.35.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
471
+ "layers.35.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
472
+ "layers.35.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
473
+ "layers.35.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
474
+ "layers.35.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
475
+ "layers.35.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
476
+ "layers.35.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
477
+ "layers.35.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
478
+ "layers.35.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
479
+ "layers.36.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
480
+ "layers.36.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
481
+ "layers.36.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
482
+ "layers.36.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
483
+ "layers.36.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
484
+ "layers.36.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
485
+ "layers.36.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
486
+ "layers.36.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
487
+ "layers.36.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
488
+ "layers.36.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
489
+ "layers.36.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
490
+ "layers.36.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
491
+ "layers.37.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
492
+ "layers.37.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
493
+ "layers.37.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
494
+ "layers.37.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
495
+ "layers.37.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
496
+ "layers.37.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
497
+ "layers.37.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
498
+ "layers.37.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
499
+ "layers.37.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
500
+ "layers.37.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
501
+ "layers.37.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
502
+ "layers.37.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
503
+ "layers.38.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
504
+ "layers.38.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
505
+ "layers.38.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
506
+ "layers.38.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
507
+ "layers.38.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
508
+ "layers.38.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
509
+ "layers.38.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
510
+ "layers.38.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
511
+ "layers.38.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
512
+ "layers.38.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
513
+ "layers.38.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
514
+ "layers.38.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
515
+ "layers.39.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
516
+ "layers.39.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
517
+ "layers.39.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
518
+ "layers.39.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
519
+ "layers.39.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
520
+ "layers.39.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
521
+ "layers.39.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
522
+ "layers.39.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
523
+ "layers.39.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
524
+ "layers.39.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
525
+ "layers.39.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
526
+ "layers.39.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
527
+ "layers.4.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
528
+ "layers.4.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
529
+ "layers.4.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
530
+ "layers.4.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
531
+ "layers.4.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
532
+ "layers.4.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
533
+ "layers.4.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
534
+ "layers.4.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
535
+ "layers.4.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
536
+ "layers.4.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
537
+ "layers.4.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
538
+ "layers.4.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
539
+ "layers.40.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
540
+ "layers.40.mlp.down_proj.weight": "pytorch-model-00002-of-00004.safetensors",
541
+ "layers.40.mlp.gate_proj.weight": "pytorch-model-00002-of-00004.safetensors",
542
+ "layers.40.mlp.up_proj.weight": "pytorch-model-00002-of-00004.safetensors",
543
+ "layers.40.post_attention_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
544
+ "layers.40.self_attn.k_proj.bias": "pytorch-model-00002-of-00004.safetensors",
545
+ "layers.40.self_attn.k_proj.weight": "pytorch-model-00002-of-00004.safetensors",
546
+ "layers.40.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
547
+ "layers.40.self_attn.q_proj.bias": "pytorch-model-00002-of-00004.safetensors",
548
+ "layers.40.self_attn.q_proj.weight": "pytorch-model-00002-of-00004.safetensors",
549
+ "layers.40.self_attn.v_proj.bias": "pytorch-model-00002-of-00004.safetensors",
550
+ "layers.40.self_attn.v_proj.weight": "pytorch-model-00002-of-00004.safetensors",
551
+ "layers.41.input_layernorm.weight": "pytorch-model-00002-of-00004.safetensors",
552
+ "layers.41.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
553
+ "layers.41.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
554
+ "layers.41.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
555
+ "layers.41.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
556
+ "layers.41.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
557
+ "layers.41.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
558
+ "layers.41.self_attn.o_proj.weight": "pytorch-model-00002-of-00004.safetensors",
559
+ "layers.41.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
560
+ "layers.41.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
561
+ "layers.41.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
562
+ "layers.41.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
563
+ "layers.42.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
564
+ "layers.42.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
565
+ "layers.42.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
566
+ "layers.42.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
567
+ "layers.42.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
568
+ "layers.42.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
569
+ "layers.42.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
570
+ "layers.42.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
571
+ "layers.42.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
572
+ "layers.42.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
573
+ "layers.42.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
574
+ "layers.42.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
575
+ "layers.43.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
576
+ "layers.43.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
577
+ "layers.43.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
578
+ "layers.43.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
579
+ "layers.43.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
580
+ "layers.43.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
581
+ "layers.43.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
582
+ "layers.43.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
583
+ "layers.43.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
584
+ "layers.43.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
585
+ "layers.43.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
586
+ "layers.43.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
587
+ "layers.44.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
588
+ "layers.44.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
589
+ "layers.44.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
590
+ "layers.44.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
591
+ "layers.44.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
592
+ "layers.44.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
593
+ "layers.44.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
594
+ "layers.44.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
595
+ "layers.44.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
596
+ "layers.44.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
597
+ "layers.44.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
598
+ "layers.44.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
599
+ "layers.45.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
600
+ "layers.45.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
601
+ "layers.45.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
602
+ "layers.45.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
603
+ "layers.45.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
604
+ "layers.45.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
605
+ "layers.45.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
606
+ "layers.45.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
607
+ "layers.45.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
608
+ "layers.45.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
609
+ "layers.45.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
610
+ "layers.45.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
611
+ "layers.46.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
612
+ "layers.46.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
613
+ "layers.46.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
614
+ "layers.46.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
615
+ "layers.46.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
616
+ "layers.46.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
617
+ "layers.46.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
618
+ "layers.46.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
619
+ "layers.46.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
620
+ "layers.46.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
621
+ "layers.46.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
622
+ "layers.46.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
623
+ "layers.47.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
624
+ "layers.47.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
625
+ "layers.47.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
626
+ "layers.47.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
627
+ "layers.47.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
628
+ "layers.47.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
629
+ "layers.47.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
630
+ "layers.47.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
631
+ "layers.47.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
632
+ "layers.47.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
633
+ "layers.47.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
634
+ "layers.47.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
635
+ "layers.5.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
636
+ "layers.5.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
637
+ "layers.5.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
638
+ "layers.5.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
639
+ "layers.5.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
640
+ "layers.5.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
641
+ "layers.5.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
642
+ "layers.5.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
643
+ "layers.5.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
644
+ "layers.5.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
645
+ "layers.5.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
646
+ "layers.5.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
647
+ "layers.6.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
648
+ "layers.6.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
649
+ "layers.6.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
650
+ "layers.6.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
651
+ "layers.6.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
652
+ "layers.6.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
653
+ "layers.6.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
654
+ "layers.6.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
655
+ "layers.6.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
656
+ "layers.6.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
657
+ "layers.6.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
658
+ "layers.6.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
659
+ "layers.7.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
660
+ "layers.7.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
661
+ "layers.7.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
662
+ "layers.7.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
663
+ "layers.7.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
664
+ "layers.7.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
665
+ "layers.7.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
666
+ "layers.7.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
667
+ "layers.7.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
668
+ "layers.7.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
669
+ "layers.7.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
670
+ "layers.7.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
671
+ "layers.8.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
672
+ "layers.8.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
673
+ "layers.8.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
674
+ "layers.8.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
675
+ "layers.8.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
676
+ "layers.8.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
677
+ "layers.8.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
678
+ "layers.8.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
679
+ "layers.8.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
680
+ "layers.8.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
681
+ "layers.8.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
682
+ "layers.8.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
683
+ "layers.9.input_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
684
+ "layers.9.mlp.down_proj.weight": "pytorch-model-00003-of-00004.safetensors",
685
+ "layers.9.mlp.gate_proj.weight": "pytorch-model-00003-of-00004.safetensors",
686
+ "layers.9.mlp.up_proj.weight": "pytorch-model-00003-of-00004.safetensors",
687
+ "layers.9.post_attention_layernorm.weight": "pytorch-model-00003-of-00004.safetensors",
688
+ "layers.9.self_attn.k_proj.bias": "pytorch-model-00003-of-00004.safetensors",
689
+ "layers.9.self_attn.k_proj.weight": "pytorch-model-00003-of-00004.safetensors",
690
+ "layers.9.self_attn.o_proj.weight": "pytorch-model-00003-of-00004.safetensors",
691
+ "layers.9.self_attn.q_proj.bias": "pytorch-model-00003-of-00004.safetensors",
692
+ "layers.9.self_attn.q_proj.weight": "pytorch-model-00003-of-00004.safetensors",
693
+ "layers.9.self_attn.v_proj.bias": "pytorch-model-00003-of-00004.safetensors",
694
+ "layers.9.self_attn.v_proj.weight": "pytorch-model-00003-of-00004.safetensors",
695
+ "lm_head.weight": "pytorch-model-00003-of-00004.safetensors",
696
+ "norm.weight": "pytorch-model-00003-of-00004.safetensors"
697
+ }
698
+ }
models/config.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.llama.configuration_llama import LlamaConfig
2
+
3
+ class NextStepConfig(LlamaConfig):
4
+
5
+ model_type = "nextstep"
6
+
7
+ def __init__(
8
+ self,
9
+ vae_name_or_path: str | None = None,
10
+ latent_size: int = 32,
11
+ latent_patch_size: int = 2,
12
+ latent_channels: int = 16,
13
+ boi: int | None = None,
14
+ eoi: int | None = None,
15
+ image_placeholder_id: int | None = None,
16
+ pad_token_id_added: int | None = None,
17
+ lm_loss_weight: float = 0.01,
18
+ im_loss_weight: float = 1.0,
19
+ fm_head_dim: int = 1536,
20
+ fm_head_layers: int = 12,
21
+ fm_head_batch_mul: int = 4,
22
+ o_attention_bias: bool | None = None,
23
+ **kwargs,
24
+ ):
25
+ super().__init__(**kwargs)
26
+
27
+ self.vae_name_or_path = vae_name_or_path
28
+
29
+ self.latent_size = latent_size
30
+ self.latent_patch_size = latent_patch_size
31
+ self.latent_channels = latent_channels
32
+
33
+ self.boi = boi
34
+ self.eoi = eoi
35
+ self.image_placeholder_id = image_placeholder_id
36
+ self.pad_token_id_added = pad_token_id_added
37
+
38
+ self.lm_loss_weight = lm_loss_weight
39
+ self.im_loss_weight = im_loss_weight
40
+
41
+ self.fm_head_dim = fm_head_dim
42
+ self.fm_head_layers = fm_head_layers
43
+ self.fm_head_batch_mul = fm_head_batch_mul
44
+
45
+ self.o_attention_bias = self.attention_bias if o_attention_bias is None else o_attention_bias
models/gen_pipeline.py ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import copy
3
+ from typing import Literal
4
+
5
+ from PIL import Image
6
+ from tqdm.auto import tqdm
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torchvision.transforms as transforms
11
+
12
+ from transformers import AutoTokenizer
13
+ from transformers.cache_utils import Cache, StaticCache
14
+
15
+ from models.nextstep_model import NextStep
16
+ from vae.nextstep_ae import AutoencoderKL
17
+ from utils.image_utils import to_pil
18
+ from utils.model_utils import layer_norm
19
+ from utils.compile_utils import compile_manager
20
+ from utils.misc import set_seed
21
+
22
+ DEFAULT_IMAGE_AREA_TOKEN = "<|image_area|>"
23
+
24
+ def hw2str(h: int, w: int) -> str:
25
+ return f"{h}*{w}"
26
+
27
+
28
+ class NextStepPipeline:
29
+ def __init__(
30
+ self,
31
+ model_name_or_path: str | None = None,
32
+ vae_name_or_path: str | None = None,
33
+ tokenizer: AutoTokenizer | None = None,
34
+ model: nn.Module | None = None,
35
+ vae: AutoencoderKL | None = None,
36
+ ):
37
+ if model is not None:
38
+ self.tokenizer = copy.deepcopy(tokenizer)
39
+ self.tokenizer.padding_side = "left"
40
+ self.model = model
41
+ elif model_name_or_path is not None:
42
+ self.tokenizer = AutoTokenizer.from_pretrained(
43
+ model_name_or_path,
44
+ local_files_only=True,
45
+ padding_side="left",
46
+ use_fast=True,
47
+ )
48
+ self.model: NextStep = NextStep.from_pretrained(model_name_or_path, local_files_only=True)
49
+ else:
50
+ raise ValueError("model or model_name_or_path is required")
51
+
52
+ self.tokenizer.add_eos_token = False
53
+ if vae_name_or_path is None:
54
+ vae_name_or_path = getattr(self.model.config, "vae_name_or_path", None)
55
+ if vae is not None:
56
+ self.vae = vae
57
+ elif vae_name_or_path is not None:
58
+ self.vae = AutoencoderKL.from_pretrained(vae_name_or_path)
59
+ else:
60
+ raise ValueError("vae or vae_name_or_path is required")
61
+
62
+ self.model.eval()
63
+ self.vae.eval()
64
+
65
+ vae_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
66
+ self.down_factor = vae_factor * self.model.config.latent_patch_size
67
+ self.shift_factor = getattr(self.vae.config, "shift_factor", 0.0)
68
+ self.scaling_factor = getattr(self.vae.config, "scaling_factor", 1.0)
69
+
70
+ self.boi = self.model.config.boi
71
+ self.eoi = self.model.config.eoi
72
+
73
+ self.image_placeholder_id = self.model.config.image_placeholder_id
74
+ self.pil2tensor = transforms.Compose(
75
+ [
76
+ transforms.ToTensor(),
77
+ transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
78
+ ]
79
+ )
80
+ self.__device = self.model.device
81
+ self.__dtype = self.model.dtype
82
+ self.to(self.device, self.dtype)
83
+
84
+ @property
85
+ def device(self):
86
+ return self.__device
87
+
88
+ @property
89
+ def device_type(self):
90
+ if isinstance(self.__device, str):
91
+ return self.__device
92
+ return self.__device.type
93
+
94
+ @property
95
+ def dtype(self):
96
+ return self.__dtype
97
+
98
+ def to(self, device: str | None = None, dtype: torch.dtype | None = None):
99
+ if device is not None:
100
+ self.__device = device
101
+ if dtype is not None:
102
+ self.__dtype = dtype
103
+ self.model.to(self.__device, dtype=self.__dtype)
104
+ self.vae.to(self.__device, dtype=self.__dtype)
105
+ return self
106
+
107
+ def _image_str(self, hw: tuple[int, int] = (256, 256)):
108
+ latent_hw = (hw[0] // self.down_factor, hw[1] // self.down_factor)
109
+ image_ids = [self.boi] + [self.image_placeholder_id] * (latent_hw[0] * latent_hw[1]) + [self.eoi]
110
+ image_str = DEFAULT_IMAGE_AREA_TOKEN + hw2str(*latent_hw) + self.tokenizer.decode(image_ids)
111
+ return image_str
112
+
113
+ def _check_input(
114
+ self, captions: str | list[str], images: Image.Image | list[Image.Image] | None
115
+ ) -> tuple[list[str], list[Image.Image] | None]:
116
+ if not isinstance(captions, list):
117
+ captions = [captions]
118
+ if images is not None:
119
+ if not isinstance(images, list):
120
+ images = [images]
121
+ # Validate image count matches <image> tokens in captions
122
+ image_token_count = 0
123
+ for caption in captions:
124
+ num_image_token = len(re.findall(r"<image>", caption))
125
+ assert num_image_token == 1, f"Caption `{caption}` has {num_image_token} image tokens, but only 1 is allowed."
126
+ image_token_count += num_image_token
127
+ if image_token_count != len(images):
128
+ raise ValueError(
129
+ f"Number of images ({len(images)}) does not match number of image tokens ({image_token_count}).\n"
130
+ f"Captions: {captions}"
131
+ )
132
+ hws = [(image.size[1], image.size[0]) for image in images]
133
+ # Replace <image> tokens sequentially with corresponding image_str based on hw
134
+ processed_captions = []
135
+ image_idx = 0
136
+ for caption in captions:
137
+ # Process each caption
138
+ processed_caption = caption
139
+ num_image_tokens = processed_caption.count("<image>")
140
+ # Replace each <image> token in order
141
+ for _ in range(num_image_tokens):
142
+ processed_caption = processed_caption.replace("<image>", self._image_str(hws[image_idx]), 1)
143
+ image_idx += 1
144
+ processed_captions.append(processed_caption)
145
+ captions = processed_captions
146
+ return captions, images
147
+
148
+ def _build_captions(
149
+ self,
150
+ captions: str | list[str],
151
+ images: list[Image.Image] | None = None,
152
+ num_images_per_caption: int = 1,
153
+ positive_prompt: str | None = None,
154
+ negative_prompt: str | None = None,
155
+ cfg: float = 1.0,
156
+ cfg_img: float = 1.0,
157
+ ):
158
+ # 1. repeat captions and images
159
+ if not isinstance(captions, list):
160
+ captions = [captions]
161
+
162
+ captions = [caption for caption in captions for _ in range(num_images_per_caption)]
163
+ if images is not None:
164
+ images = [image for image in images for _ in range(num_images_per_caption)]
165
+
166
+ # 2. add positive prompt
167
+ if positive_prompt is not None and positive_prompt != "":
168
+ captions = [f"{caption} {positive_prompt}" for caption in captions]
169
+
170
+ # 3. add negative prompt
171
+ if negative_prompt is None:
172
+ negative_prompt = ""
173
+
174
+ num_samples = len(captions)
175
+ if cfg != 1.0 and cfg_img != 1.0: # use both image and text CFG
176
+ w, h = images[0].size
177
+ captions = (
178
+ captions + [self._image_str((h, w)) + negative_prompt] * num_samples
179
+ )
180
+ images = images + images
181
+ captions = captions + [negative_prompt] * num_samples
182
+ elif cfg != 1.0 and cfg_img == 1.0: # use text CFG
183
+ captions = captions + [negative_prompt] * num_samples
184
+ elif cfg == 1.0 and cfg_img == 1.0:
185
+ pass
186
+
187
+ return captions, images
188
+
189
+ def _add_prefix_ids(self, hw: tuple[int, int], input_ids: torch.Tensor, attention_mask: torch.Tensor):
190
+ prefix_str = DEFAULT_IMAGE_AREA_TOKEN + hw2str(hw[0] // self.down_factor, hw[1] // self.down_factor)
191
+ prefix_output = self.tokenizer(
192
+ prefix_str,
193
+ truncation=False,
194
+ add_special_tokens=True,
195
+ return_tensors="pt"
196
+ )
197
+ prefix_input_ids = prefix_output.input_ids.to(input_ids.device, dtype=input_ids.dtype)
198
+ prefix_attention_mask = prefix_output.attention_mask.to(attention_mask.device, dtype=attention_mask.dtype)
199
+ # remove bos token
200
+ if self.tokenizer.bos_token is not None:
201
+ prefix_input_ids = prefix_input_ids[:, 1:]
202
+ prefix_attention_mask = prefix_attention_mask[:, 1:]
203
+ # add boi token
204
+ prefix_input_ids = torch.cat(
205
+ [
206
+ prefix_input_ids,
207
+ prefix_input_ids.new_tensor([self.model.config.boi]).unsqueeze(0),
208
+ ],
209
+ dim=1,
210
+ )
211
+ prefix_attention_mask = torch.cat(
212
+ [
213
+ prefix_attention_mask,
214
+ prefix_attention_mask.new_ones((prefix_attention_mask.shape[0], 1)),
215
+ ],
216
+ dim=1,
217
+ )
218
+ bsz = input_ids.shape[0]
219
+ input_ids = torch.cat([input_ids, prefix_input_ids.expand(bsz, -1)], dim=1)
220
+ attention_mask = torch.cat([attention_mask, prefix_attention_mask.expand(bsz, -1)], dim=1)
221
+
222
+ return input_ids, attention_mask
223
+
224
+ @torch.no_grad()
225
+ def decoding(
226
+ self,
227
+ c: torch.Tensor,
228
+ attention_mask: torch.Tensor,
229
+ past_key_values: Cache,
230
+ max_new_len: int,
231
+ num_images_per_caption: int,
232
+ use_norm: bool = False,
233
+ cfg: float = 1.0,
234
+ cfg_img: float = 1.0,
235
+ cfg_schedule: Literal["linear", "constant"] = "constant",
236
+ timesteps_shift: float = 1.0,
237
+ num_sampling_steps: int = 20,
238
+ progress: bool = True,
239
+ hw: tuple[int, int] = (256, 256),
240
+ step: int = 0,
241
+ ):
242
+ indices = list(range(max_new_len))
243
+ indices = tqdm(indices, unit="tokens") if progress else indices
244
+ tokens = None
245
+ for step in indices:
246
+ # cfg schedule follow Muse
247
+ if cfg_schedule == "linear":
248
+ tokens_len = 0 if tokens is None else tokens.shape[1]
249
+ cfg_iter = max(cfg / 2, 1 + (cfg - 1) * tokens_len / max_new_len)
250
+ cfg_img_iter = max(cfg_img / 2, 1 + (cfg_img - 1) * tokens_len / max_new_len)
251
+ elif cfg_schedule == "constant":
252
+ cfg_iter = cfg
253
+ cfg_img_iter = cfg_img
254
+ else:
255
+ raise NotImplementedError
256
+
257
+ c = self.model.image_out_projector(c)
258
+ token_sampled = self.model.image_head.sample(
259
+ c=c.squeeze(1),
260
+ cfg=cfg_iter,
261
+ cfg_img=cfg_img_iter,
262
+ timesteps_shift=timesteps_shift,
263
+ num_sampling_steps=num_sampling_steps,
264
+ noise_repeat=num_images_per_caption,
265
+ )
266
+
267
+ if use_norm:
268
+ token_sampled = layer_norm(token_sampled, normalized_shape=token_sampled.size()[1:])
269
+ if tokens is not None:
270
+ tokens = torch.cat([tokens, token_sampled.unsqueeze(1)], dim=1)
271
+ else:
272
+ tokens = token_sampled.unsqueeze(1)
273
+
274
+ cur_inputs_embeds = self.model.image_in_projector(tokens[:, -1:])
275
+ if cfg != 1.0 and cfg_img == 1.0:
276
+ cur_inputs_embeds = torch.cat([cur_inputs_embeds, cur_inputs_embeds], dim=0)
277
+ elif cfg != 1.0 and cfg_img != 1.0:
278
+ cur_inputs_embeds = torch.cat([cur_inputs_embeds, cur_inputs_embeds, cur_inputs_embeds], dim=0)
279
+
280
+ attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
281
+ outputs = self.model.forward_model(
282
+ inputs_embeds=cur_inputs_embeds,
283
+ attention_mask=attention_mask,
284
+ past_key_values=past_key_values,
285
+ use_cache=True,
286
+ )
287
+ past_key_values = outputs.past_key_values
288
+ c = outputs.last_hidden_state[:, -1:]
289
+ if self.model.config.use_gen_pos_embed:
290
+ c = c + self.model.gen_pos_embed_with_ar(hw[0], hw[1])[:, step + 1 : step + 2, :]
291
+
292
+ return tokens
293
+
294
+ @torch.no_grad()
295
+ def generate_image(
296
+ self,
297
+ captions: str | list[str],
298
+ images: list[Image.Image] | None = None,
299
+ num_images_per_caption: int = 1,
300
+ positive_prompt: str | None = None,
301
+ negative_prompt: str | None = None,
302
+ hw: tuple[int, int] = (256, 256),
303
+ use_norm: bool = False,
304
+ cfg: float = 1.0,
305
+ cfg_img: float = 1.0,
306
+ cfg_schedule: Literal["linear", "constant"] = "constant",
307
+ num_sampling_steps: int = 20,
308
+ timesteps_shift: float = 1.0,
309
+ seed: int = 42,
310
+ progress: bool = True,
311
+ ) -> list[Image.Image]:
312
+ # 0. set seed
313
+ if seed is not None:
314
+ set_seed(seed)
315
+
316
+ # 1. check input
317
+ captions, images = self._check_input(captions, images)
318
+
319
+ # 2. build captions
320
+ captions, images = self._build_captions(
321
+ captions, images, num_images_per_caption, positive_prompt, negative_prompt, cfg, cfg_img
322
+ )
323
+
324
+ # 3. encode images
325
+ # `images` must be processed by `process_images` before calling this function
326
+ latents = None
327
+ if images is not None:
328
+ pixel_values = [self.pil2tensor(image) for image in images]
329
+ pixel_values = torch.stack(pixel_values).to(self.device)
330
+ with compile_manager.compile_disabled():
331
+ posterior = self.vae.encode(pixel_values.to(self.vae.dtype)).latent_dist
332
+ latents = (posterior.sample() - self.shift_factor) * self.scaling_factor
333
+ captions = [self.tokenizer.bos_token + caption if self.tokenizer.bos_token is not None else caption for caption in captions]
334
+
335
+ # 4. tokenize caption & add prefix ids
336
+ output = self.tokenizer(
337
+ captions,
338
+ padding="longest",
339
+ truncation=False,
340
+ add_special_tokens=True,
341
+ return_tensors="pt",
342
+ padding_side="left"
343
+ )
344
+ input_ids = output.input_ids.to(self.device)
345
+ attention_mask = output.attention_mask.to(self.device)
346
+ input_ids, attention_mask = self._add_prefix_ids(hw, input_ids, attention_mask)
347
+
348
+ # 5. LLM prefill
349
+ max_new_len = (hw[0] // self.down_factor) * (hw[1] // self.down_factor)
350
+ max_cache_len = input_ids.shape[1] + max_new_len
351
+ past_key_values = StaticCache(
352
+ config=self.model.config,
353
+ max_batch_size=input_ids.shape[0],
354
+ max_cache_len=max_cache_len,
355
+ device=self.device,
356
+ dtype=self.dtype,
357
+ )
358
+ inputs_embeds = self.model.prepare_inputs_embeds(input_ids, latents)
359
+ with compile_manager.compile_disabled():
360
+ outputs = self.model.forward_model(
361
+ inputs_embeds=inputs_embeds,
362
+ attention_mask=attention_mask,
363
+ past_key_values=past_key_values,
364
+ use_cache=True,
365
+ )
366
+ past_key_values = outputs.past_key_values
367
+ c = outputs.last_hidden_state[:, -1:]
368
+ if self.model.config.use_gen_pos_embed:
369
+ c = c + self.model.gen_pos_embed_with_ar(hw[0], hw[1])[:, 0:1, :]
370
+
371
+ # 6. decoding
372
+ tokens = self.decoding(
373
+ c=c,
374
+ attention_mask=attention_mask,
375
+ past_key_values=past_key_values,
376
+ max_new_len=max_new_len,
377
+ num_images_per_caption=num_images_per_caption,
378
+ use_norm=use_norm,
379
+ cfg=cfg,
380
+ cfg_img=cfg_img,
381
+ cfg_schedule=cfg_schedule,
382
+ timesteps_shift=timesteps_shift,
383
+ num_sampling_steps=num_sampling_steps,
384
+ progress=progress,
385
+ hw=hw,
386
+ )
387
+
388
+ # 7. unpatchify
389
+ latents = self.model.unpatchify(tokens)
390
+ latents = (latents / self.scaling_factor) + self.shift_factor
391
+
392
+ # 8. decode latents
393
+ with compile_manager.compile_disabled():
394
+ sampled_images = self.vae.decode(latents.to(self.vae.dtype)).sample
395
+ sampled_images = sampled_images.detach().cpu().to(torch.float32)
396
+ pil_images = [to_pil(img) for img in sampled_images]
397
+
398
+ return pil_images
models/heads.py ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from torch.utils.checkpoint import checkpoint
6
+
7
+ from transformers.activations import ACT2FN
8
+
9
+ from models.config import LlamaConfig
10
+ from utils.misc import LargeInt
11
+ from utils.model_utils import expand_t, randn_tensor
12
+ from utils.compile_utils import smart_compile
13
+
14
+
15
+ class LlamaMLP(nn.Module):
16
+ def __init__(self, config: LlamaConfig):
17
+ super().__init__()
18
+ self.config = config
19
+ self.hidden_size = config.hidden_size
20
+ self.intermediate_size = config.intermediate_size
21
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
22
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
23
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
24
+ self.act_fn = ACT2FN[config.hidden_act]
25
+
26
+ def forward(self, x):
27
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
28
+ return down_proj
29
+
30
+
31
+
32
+
33
+ def modulate(x, shift, scale=None):
34
+ if shift is None:
35
+ return x * (1 + scale)
36
+ return x * (1 + scale) + shift
37
+
38
+
39
+ class ResBlock(nn.Module):
40
+ def __init__(self, channels, mlp_ratio=1.0):
41
+ super().__init__()
42
+ self.channels = channels
43
+ self.intermediate_size = int(channels * mlp_ratio)
44
+
45
+ self.in_ln = nn.LayerNorm(self.channels, eps=1e-6)
46
+ self.mlp = nn.Sequential(
47
+ nn.Linear(self.channels, self.intermediate_size),
48
+ nn.SiLU(),
49
+ nn.Linear(self.intermediate_size, self.channels),
50
+ )
51
+
52
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(channels, 3 * channels, bias=True))
53
+
54
+ def forward(self, x, y):
55
+ shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(y).chunk(3, dim=-1)
56
+ h = modulate(self.in_ln(x), shift_mlp, scale_mlp)
57
+ h = self.mlp(h)
58
+ return x + gate_mlp * h
59
+
60
+
61
+ class FinalLayer(nn.Module):
62
+ def __init__(self, model_channels, out_channels):
63
+ super().__init__()
64
+ self.norm_final = nn.LayerNorm(model_channels, elementwise_affine=False, eps=1e-6)
65
+ self.linear = nn.Linear(model_channels, out_channels, bias=True)
66
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(model_channels, 2 * model_channels, bias=True))
67
+
68
+ def forward(self, x, c):
69
+ shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
70
+ x = modulate(self.norm_final(x), shift, scale)
71
+ x = self.linear(x)
72
+ return x
73
+
74
+
75
+ class TimestepEmbedder(nn.Module):
76
+ """
77
+ Embeds scalar timesteps into vector representations.
78
+ """
79
+
80
+ def __init__(self, hidden_size, frequency_embedding_size=256):
81
+ super().__init__()
82
+ self.mlp = nn.Sequential(
83
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True),
84
+ nn.SiLU(),
85
+ nn.Linear(hidden_size, hidden_size, bias=True),
86
+ )
87
+ self.frequency_embedding_size = frequency_embedding_size
88
+
89
+ @staticmethod
90
+ def timestep_embedding(t: torch.Tensor, dim: int, max_period: float = 10000.0):
91
+ """
92
+ Create sinusoidal timestep embeddings.
93
+ :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional.
94
+ :param dim: the dimension of the output.
95
+ :param max_period: controls the minimum frequency of the embeddings.
96
+ :return: an (N, D) Tensor of positional embeddings.
97
+ """
98
+ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
99
+ half = dim // 2
100
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
101
+ device=t.device
102
+ )
103
+ args = t[:, None].float() * freqs[None]
104
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
105
+ if dim % 2:
106
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
107
+ return embedding
108
+
109
+ def forward(self, t):
110
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
111
+ t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype))
112
+ return t_emb
113
+
114
+
115
+ class SimpleMLPAdaLN(nn.Module):
116
+ def __init__(self, input_dim, cond_dim, dim=1536, layers=12, mlp_ratio=1.0):
117
+ super().__init__()
118
+ self.input_dim = input_dim
119
+ self.cond_dim = cond_dim
120
+ self.dim = dim
121
+ self.layers = layers
122
+ self.mlp_ratio = mlp_ratio
123
+
124
+ self.time_embed = TimestepEmbedder(dim)
125
+ self.cond_embed = nn.Linear(cond_dim, dim)
126
+ self.input_proj = nn.Linear(input_dim, dim)
127
+
128
+ res_blocks = []
129
+ for _ in range(layers):
130
+ res_blocks.append(ResBlock(dim, mlp_ratio))
131
+ self.res_blocks = nn.ModuleList(res_blocks)
132
+
133
+ self.final_layer = FinalLayer(dim, input_dim)
134
+
135
+ self.grad_checkpointing = False
136
+
137
+ self.initialize_weights()
138
+
139
+ def initialize_weights(self):
140
+ def _basic_init(module):
141
+ if isinstance(module, nn.Linear):
142
+ torch.nn.init.xavier_uniform_(module.weight)
143
+ if module.bias is not None:
144
+ nn.init.constant_(module.bias, 0)
145
+
146
+ self.apply(_basic_init)
147
+
148
+ # Initialize timestep embedding MLP
149
+ nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
150
+ nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)
151
+
152
+ # Zero-out adaLN modulation layers
153
+ for block in self.res_blocks:
154
+ nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
155
+ nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
156
+
157
+ # Zero-out output layers
158
+ nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
159
+ nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
160
+ nn.init.constant_(self.final_layer.linear.weight, 0)
161
+ nn.init.constant_(self.final_layer.linear.bias, 0)
162
+
163
+ @smart_compile()
164
+ def forward(self, x, t, c):
165
+ """
166
+ x.shape = (bsz, input_dim)
167
+ t.shape = (bsz,)
168
+ c.shape = (bsz, cond_dim)
169
+ """
170
+
171
+ x = self.input_proj(x)
172
+ t = self.time_embed(t)
173
+ c = self.cond_embed(c)
174
+
175
+ y = t + c
176
+
177
+ for block in self.res_blocks:
178
+ if self.grad_checkpointing and self.training:
179
+ x = checkpoint(block, x, y, use_reentrant=True)
180
+ else:
181
+ x = block(x, y)
182
+
183
+ return self.final_layer(x, y)
184
+
185
+
186
+ class FlowMatchingHead(nn.Module):
187
+
188
+ def __init__(self, input_dim, cond_dim, dim=1536, layers=12, mlp_ratio=1.0):
189
+ super(FlowMatchingHead, self).__init__()
190
+ self.input_dim = input_dim
191
+ self.net = SimpleMLPAdaLN(input_dim=input_dim, cond_dim=cond_dim, dim=dim, layers=layers, mlp_ratio=mlp_ratio)
192
+
193
+ @property
194
+ def dtype(self):
195
+ return self.net.input_proj.weight.dtype
196
+
197
+ @property
198
+ def device(self):
199
+ return self.net.input_proj.weight.device
200
+
201
+ @property
202
+ def trainable_params(self) -> float:
203
+ n_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
204
+ return LargeInt(n_params)
205
+
206
+
207
+ def get_score_from_velocity(self, velocity, x, t):
208
+ """Wrapper function: transfrom velocity prediction model to score
209
+ Args:
210
+ velocity: [bsz, ...] shaped tensor; velocity model output
211
+ x: [bsz, ...] shaped tensor; x_t data point
212
+ t: [bsz,] time tensor
213
+ """
214
+ t = expand_t(t, x)
215
+ alpha_t, d_alpha_t = t, 1
216
+ sigma_t, d_sigma_t = 1 - t, -1
217
+ mean = x
218
+ reverse_alpha_ratio = alpha_t / d_alpha_t
219
+ var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
220
+ score = (reverse_alpha_ratio * velocity - mean) / var
221
+ return score
222
+
223
+ def get_velocity_from_cfg(self, velocity, cfg, cfg_img, cfg_mult):
224
+ if cfg_mult == 2:
225
+ cond_v, uncond_v = torch.chunk(velocity, 2, dim=0)
226
+ velocity = uncond_v + cfg * (cond_v - uncond_v)
227
+ elif cfg_mult == 3:
228
+ cond_v, uncond_v1, uncond_v2 = torch.chunk(velocity, 3, dim=0)
229
+ velocity = uncond_v2 + cfg_img * (uncond_v1 - uncond_v2) + cfg * (cond_v - uncond_v1)
230
+ return velocity
231
+
232
+ @smart_compile(options={"triton.cudagraphs": True}, fullgraph=True)
233
+ @torch.no_grad()
234
+ def sample(
235
+ self,
236
+ c: torch.Tensor,
237
+ cfg: float = 1.0,
238
+ cfg_img: float = 1.0,
239
+ timesteps_shift: float = 1.0,
240
+ num_sampling_steps: int = 20,
241
+ last_step_size: float = 0.0,
242
+ noise_repeat: int = 1,
243
+ ):
244
+ # """c.shape = (bsz, cond_dim)"""
245
+ cfg_mult = 1
246
+ if cfg > 1.0:
247
+ cfg_mult += 1
248
+ if cfg_img > 1.0:
249
+ cfg_mult += 1
250
+
251
+ noise = randn_tensor((c.shape[0] // cfg_mult, self.input_dim), noise_repeat, self.device)
252
+
253
+ mean_x = noise
254
+ x = noise
255
+ xs = []
256
+
257
+ t0, t1 = 0, 1
258
+ timesteps = torch.linspace(t0, t1, num_sampling_steps + 1, device=c.device)[:-1]
259
+ timesteps = timesteps / (timesteps_shift - (timesteps_shift - 1) * timesteps)
260
+ timesteps = torch.cat([timesteps, torch.ones(1, device=c.device)])
261
+ for ti, tj in zip(timesteps[:-1], timesteps[1:]):
262
+ dt = tj - ti
263
+
264
+ combined = torch.cat([x] * cfg_mult, dim=0)
265
+ velocity = self.net(combined.to(c.dtype), ti.expand(c.shape[0]).to(c), c)
266
+ velocity = velocity.to(torch.float32)
267
+
268
+ velocity = self.get_velocity_from_cfg(velocity, cfg, cfg_img, cfg_mult)
269
+ score = self.get_score_from_velocity(velocity, x, ti.expand(x.shape[0]).to(x))
270
+ drift = velocity + (1 - expand_t(ti.expand(x.shape[0]).to(x), x)) * score
271
+
272
+ w_cur = randn_tensor((c.shape[0] // cfg_mult, self.input_dim), noise_repeat, self.device)
273
+ dw = w_cur * torch.sqrt(dt)
274
+
275
+ mean_x = x + drift * dt
276
+ x = mean_x + torch.sqrt(2 * (1 - expand_t(ti.expand(x.shape[0]).to(x), x))) * dw
277
+ xs.append(x)
278
+
279
+
280
+ if len(xs) != num_sampling_steps:
281
+ raise ValueError(f"Samples ({len(xs)}) does not match the number of steps ({num_sampling_steps})")
282
+
283
+ return xs[-1].to(c.dtype)
models/llama_model.py ADDED
@@ -0,0 +1,568 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple
2
+ from loguru import logger
3
+ import math
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from transformers.cache_utils import Cache, StaticCache
9
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
10
+ from transformers.utils import is_flash_attn_greater_or_equal_2_10
11
+ from transformers import ROPE_INIT_FUNCTIONS
12
+ from transformers.models.llama.configuration_llama import LlamaConfig
13
+
14
+ from models.heads import LlamaMLP
15
+ from utils.model_utils import apply_rotary_pos_emb, repeat_kv
16
+ from models.config import NextStepConfig
17
+
18
+
19
+ class LlamaRMSNorm(nn.Module):
20
+ """LlamaRMSNorm is equivalent to T5LayerNorm"""
21
+
22
+ def __init__(self, hidden_size, eps=1e-6):
23
+ super().__init__()
24
+ self.weight = nn.Parameter(torch.ones(hidden_size))
25
+ self.variance_epsilon = eps
26
+
27
+ def forward(self, hidden_states):
28
+ input_dtype = hidden_states.dtype
29
+ hidden_states = hidden_states.to(torch.float32)
30
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
31
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
32
+ return self.weight * hidden_states.to(input_dtype)
33
+
34
+ def extra_repr(self):
35
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
36
+
37
+
38
+ class LlamaRotaryEmbedding(nn.Module):
39
+ def __init__(self, device=None, config: Optional[LlamaConfig] = None):
40
+ super().__init__()
41
+ self.rope_type = "default"
42
+ self.config = config
43
+
44
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
45
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
46
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
47
+
48
+ @torch.no_grad()
49
+ def forward(self, x, position_ids):
50
+ # Core RoPE block
51
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
52
+ position_ids_expanded = position_ids[:, None, :].float()
53
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
54
+ device_type = x.device.type
55
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
56
+ with torch.autocast(device_type=device_type, enabled=False):
57
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
58
+ emb = torch.cat((freqs, freqs), dim=-1)
59
+ cos = emb.cos()
60
+ sin = emb.sin()
61
+
62
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
63
+ cos = cos * self.attention_scaling
64
+ sin = sin * self.attention_scaling
65
+
66
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
67
+
68
+
69
+ class LlamaAttention(nn.Module):
70
+ def __init__(self, config: NextStepConfig, layer_idx: Optional[int]):
71
+ super().__init__()
72
+ self.config = config
73
+ self.layer_idx = layer_idx
74
+
75
+ self.attention_dropout = config.attention_dropout
76
+ self.hidden_size = config.hidden_size
77
+ self.num_heads = config.num_attention_heads
78
+ self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
79
+ self.num_key_value_heads = config.num_key_value_heads
80
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
81
+ self.max_position_embeddings = config.max_position_embeddings
82
+ self.rope_theta = config.rope_theta
83
+ self.is_causal = True
84
+
85
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
86
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
87
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
88
+ self.o_proj = nn.Linear(
89
+ self.num_heads * self.head_dim, self.hidden_size, bias=getattr(config, "o_attention_bias", config.attention_bias)
90
+ )
91
+ self._flash_attn_uses_top_left_mask = False
92
+
93
+ def forward_sdpa(
94
+ self,
95
+ hidden_states: torch.Tensor,
96
+ attention_mask: Optional[torch.Tensor] = None,
97
+ position_ids: Optional[torch.LongTensor] = None,
98
+ past_key_value: Optional[Cache] = None,
99
+ output_attentions: bool = False,
100
+ use_cache: bool = False,
101
+ cache_position: Optional[torch.LongTensor] = None,
102
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
103
+ **kwargs,
104
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
105
+ bsz, q_len, _ = hidden_states.size()
106
+
107
+ query_states = self.q_proj(hidden_states)
108
+ key_states = self.k_proj(hidden_states)
109
+ value_states = self.v_proj(hidden_states)
110
+
111
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
112
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
113
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
114
+
115
+ if position_embeddings is None:
116
+ logger.warning_once(
117
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
118
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
119
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
120
+ "removed and `position_embeddings` will be mandatory."
121
+ )
122
+ cos, sin = self.rotary_emb(value_states, position_ids)
123
+ else:
124
+ cos, sin = position_embeddings
125
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
126
+
127
+ if past_key_value is not None:
128
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
129
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
130
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
131
+
132
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
133
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
134
+
135
+ causal_mask = attention_mask
136
+ if attention_mask is not None:
137
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
138
+
139
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
140
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
141
+ if query_states.device.type == "cuda" and causal_mask is not None:
142
+ query_states = query_states.contiguous()
143
+ key_states = key_states.contiguous()
144
+ value_states = value_states.contiguous()
145
+
146
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
147
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
148
+ is_causal = True if causal_mask is None and q_len > 1 else False
149
+
150
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
151
+ query_states,
152
+ key_states,
153
+ value_states,
154
+ attn_mask=causal_mask,
155
+ dropout_p=self.attention_dropout if self.training else 0.0,
156
+ is_causal=is_causal,
157
+ )
158
+
159
+ attn_output = attn_output.transpose(1, 2).contiguous()
160
+ attn_output = attn_output.view(bsz, q_len, -1)
161
+
162
+ attn_output = self.o_proj(attn_output)
163
+
164
+ return attn_output, None, past_key_value
165
+
166
+ def forward_flash(
167
+ self,
168
+ hidden_states: torch.Tensor,
169
+ attention_mask: Optional[torch.LongTensor] = None,
170
+ position_ids: Optional[torch.LongTensor] = None,
171
+ past_key_value: Optional[Cache] = None,
172
+ output_attentions: bool = False,
173
+ use_cache: bool = False,
174
+ cache_position: Optional[torch.LongTensor] = None,
175
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
176
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
177
+ if isinstance(past_key_value, StaticCache):
178
+ raise ValueError(
179
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
180
+ "make sure to use `sdpa` in the mean time, and open an issue at GitHub - huggingface/transformers: 🤗 Transformers: the model-definition framework for state-of-the-a"
181
+ )
182
+
183
+ output_attentions = False
184
+
185
+ bsz, q_len, _ = hidden_states.size()
186
+
187
+ query_states = self.q_proj(hidden_states)
188
+ key_states = self.k_proj(hidden_states)
189
+ value_states = self.v_proj(hidden_states)
190
+
191
+ # Flash attention requires the input to have the shape
192
+ # batch_size x seq_length x head_dim x hidden_dim
193
+ # therefore we just need to keep the original shape
194
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
195
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
196
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
197
+
198
+ if position_embeddings is None:
199
+ logger.warning_once(
200
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
201
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
202
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
203
+ "removed and `position_embeddings` will be mandatory."
204
+ )
205
+ cos, sin = self.rotary_emb(value_states, position_ids)
206
+ else:
207
+ cos, sin = position_embeddings
208
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
209
+
210
+ if past_key_value is not None:
211
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
212
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
213
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
214
+
215
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
216
+ # to be able to avoid many of these transpose/reshape/view.
217
+ query_states = query_states.transpose(1, 2)
218
+ key_states = key_states.transpose(1, 2)
219
+ value_states = value_states.transpose(1, 2)
220
+
221
+ dropout_rate = self.attention_dropout if self.training else 0.0
222
+
223
+ input_dtype = query_states.dtype
224
+ if input_dtype == torch.float32:
225
+ if torch.is_autocast_enabled():
226
+ target_dtype = torch.get_autocast_gpu_dtype()
227
+ # Handle the case where the model is quantized
228
+ elif hasattr(self.config, "_pre_quantization_dtype"):
229
+ target_dtype = self.config._pre_quantization_dtype
230
+ else:
231
+ target_dtype = self.q_proj.weight.dtype
232
+
233
+ logger.warning_once(
234
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
235
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
236
+ f" {target_dtype}."
237
+ )
238
+
239
+ query_states = query_states.to(target_dtype)
240
+ key_states = key_states.to(target_dtype)
241
+ value_states = value_states.to(target_dtype)
242
+
243
+ attn_output = _flash_attention_forward(
244
+ query_states,
245
+ key_states,
246
+ value_states,
247
+ attention_mask,
248
+ q_len,
249
+ position_ids=position_ids,
250
+ dropout=dropout_rate,
251
+ sliding_window=getattr(self, "sliding_window", None),
252
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
253
+ is_causal=self.is_causal,
254
+ )
255
+
256
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
257
+ attn_output = self.o_proj(attn_output)
258
+
259
+ if not output_attentions:
260
+ attn_weights = None
261
+
262
+ return attn_output, attn_weights, past_key_value
263
+
264
+ def forward(
265
+ self,
266
+ hidden_states: torch.Tensor,
267
+ attention_mask: Optional[torch.Tensor] = None,
268
+ position_ids: Optional[torch.LongTensor] = None,
269
+ past_key_value: Optional[Cache] = None,
270
+ output_attentions: bool = False,
271
+ use_cache: bool = False,
272
+ cache_position: Optional[torch.LongTensor] = None,
273
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
274
+ **kwargs,
275
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
276
+ bsz, q_len, _ = hidden_states.size()
277
+
278
+ query_states = self.q_proj(hidden_states)
279
+ key_states = self.k_proj(hidden_states)
280
+ value_states = self.v_proj(hidden_states)
281
+
282
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
283
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
284
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
285
+
286
+ if position_embeddings is None:
287
+ logger.warning_once(
288
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
289
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
290
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
291
+ "removed and `position_embeddings` will be mandatory."
292
+ )
293
+ cos, sin = self.rotary_emb(value_states, position_ids)
294
+ else:
295
+ cos, sin = position_embeddings
296
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
297
+
298
+ if past_key_value is not None:
299
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
300
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
301
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
302
+
303
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
304
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
305
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
306
+
307
+ if attention_mask is not None: # no matter the length, we just slice it
308
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
309
+ attn_weights = attn_weights + causal_mask
310
+
311
+ # upcast attention to fp32
312
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
313
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
314
+ attn_output = torch.matmul(attn_weights, value_states)
315
+
316
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
317
+ raise ValueError(
318
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
319
+ f" {attn_output.size()}"
320
+ )
321
+
322
+ attn_output = attn_output.transpose(1, 2).contiguous()
323
+
324
+ attn_output = attn_output.reshape(bsz, q_len, -1)
325
+
326
+ attn_output = self.o_proj(attn_output)
327
+
328
+ if not output_attentions:
329
+ attn_weights = None
330
+
331
+ return attn_output, attn_weights, past_key_value
332
+
333
+
334
+ class LlamaFlashAttention2(LlamaAttention):
335
+ """
336
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
337
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
338
+ flash attention and deal with padding tokens in case the input contains any of them.
339
+ """
340
+
341
+ def __init__(self, *args, **kwargs):
342
+ super().__init__(*args, **kwargs)
343
+
344
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
345
+
346
+ def forward(
347
+ self,
348
+ hidden_states: torch.Tensor,
349
+ attention_mask: Optional[torch.LongTensor] = None,
350
+ past_key_value: Optional[Cache] = None,
351
+ output_attentions: bool = False,
352
+ use_cache: bool = False,
353
+ cache_position: Optional[torch.LongTensor] = None,
354
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
355
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
356
+ if isinstance(past_key_value, StaticCache):
357
+ raise ValueError(
358
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
359
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
360
+ )
361
+
362
+ output_attentions = False
363
+
364
+ bsz, q_len, _ = hidden_states.size()
365
+
366
+ query_states = self.q_proj(hidden_states)
367
+ key_states = self.k_proj(hidden_states)
368
+ value_states = self.v_proj(hidden_states)
369
+
370
+ # Flash attention requires the input to have the shape
371
+ # batch_size x seq_length x head_dim x hidden_dim
372
+ # therefore we just need to keep the original shape
373
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
374
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
375
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
376
+
377
+ cos, sin = position_embeddings
378
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
379
+
380
+ if past_key_value is not None:
381
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
382
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
383
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
384
+
385
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
386
+ # to be able to avoid many of these transpose/reshape/view.
387
+ query_states = query_states.transpose(1, 2)
388
+ key_states = key_states.transpose(1, 2)
389
+ value_states = value_states.transpose(1, 2)
390
+
391
+ dropout_rate = self.attention_dropout if self.training else 0.0
392
+
393
+ input_dtype = query_states.dtype
394
+ if input_dtype == torch.float32:
395
+ if torch.is_autocast_enabled():
396
+ target_dtype = torch.get_autocast_gpu_dtype()
397
+ # Handle the case where the model is quantized
398
+ elif hasattr(self.config, "_pre_quantization_dtype"):
399
+ target_dtype = self.config._pre_quantization_dtype
400
+ else:
401
+ target_dtype = self.q_proj.weight.dtype
402
+
403
+ logger.warning_once(
404
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
405
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
406
+ f" {target_dtype}."
407
+ )
408
+
409
+ query_states = query_states.to(target_dtype)
410
+ key_states = key_states.to(target_dtype)
411
+ value_states = value_states.to(target_dtype)
412
+
413
+ attn_output = _flash_attention_forward(
414
+ query_states,
415
+ key_states,
416
+ value_states,
417
+ attention_mask,
418
+ q_len,
419
+ position_ids=None,
420
+ dropout=dropout_rate,
421
+ sliding_window=getattr(self, "sliding_window", None),
422
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
423
+ is_causal=self.is_causal,
424
+ )
425
+
426
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
427
+ attn_output = self.o_proj(attn_output)
428
+
429
+ if not output_attentions:
430
+ attn_weights = None
431
+
432
+ return attn_output, attn_weights, past_key_value
433
+
434
+
435
+ class LlamaSdpaAttention(LlamaAttention):
436
+ """
437
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
438
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
439
+ SDPA API.
440
+ """
441
+
442
+ # Adapted from LlamaAttention.forward
443
+ def forward(
444
+ self,
445
+ hidden_states: torch.Tensor,
446
+ attention_mask: Optional[torch.Tensor] = None,
447
+ past_key_value: Optional[Cache] = None,
448
+ output_attentions: bool = False,
449
+ use_cache: bool = False,
450
+ cache_position: Optional[torch.LongTensor] = None,
451
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
452
+ **kwargs,
453
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
454
+
455
+ bsz, q_len, _ = hidden_states.size()
456
+
457
+ query_states = self.q_proj(hidden_states)
458
+ key_states = self.k_proj(hidden_states)
459
+ value_states = self.v_proj(hidden_states)
460
+
461
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
462
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
463
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
464
+
465
+ cos, sin = position_embeddings
466
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
467
+
468
+ if past_key_value is not None:
469
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
470
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
471
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
472
+
473
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
474
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
475
+
476
+ causal_mask = attention_mask
477
+ if attention_mask is not None:
478
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
479
+
480
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
481
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
482
+ if query_states.device.type == "cuda" and causal_mask is not None:
483
+ query_states = query_states.contiguous()
484
+ key_states = key_states.contiguous()
485
+ value_states = value_states.contiguous()
486
+
487
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
488
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
489
+ is_causal = True if causal_mask is None and q_len > 1 else False
490
+
491
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
492
+ query_states,
493
+ key_states,
494
+ value_states,
495
+ attn_mask=causal_mask,
496
+ dropout_p=self.attention_dropout if self.training else 0.0,
497
+ is_causal=is_causal,
498
+ )
499
+
500
+ attn_output = attn_output.transpose(1, 2).contiguous()
501
+ attn_output = attn_output.view(bsz, q_len, -1)
502
+
503
+ attn_output = self.o_proj(attn_output)
504
+
505
+ return attn_output, None, past_key_value
506
+
507
+
508
+ LLAMA_ATTENTION_CLASSES = {
509
+ "eager": LlamaAttention,
510
+ "flash_attention_2": LlamaFlashAttention2,
511
+ "sdpa": LlamaSdpaAttention,
512
+ }
513
+
514
+
515
+ class LlamaDecoderLayer(nn.Module):
516
+ def __init__(self, config: LlamaConfig, layer_idx: int):
517
+ super().__init__()
518
+ self.hidden_size = config.hidden_size
519
+
520
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
521
+
522
+ self.mlp = LlamaMLP(config)
523
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
524
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
525
+
526
+ def forward(
527
+ self,
528
+ hidden_states: torch.Tensor,
529
+ attention_mask: Optional[torch.Tensor] = None,
530
+ past_key_value: Optional[Cache] = None,
531
+ output_attentions: Optional[bool] = False,
532
+ use_cache: Optional[bool] = False,
533
+ cache_position: Optional[torch.LongTensor] = None,
534
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
535
+ **kwargs,
536
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
537
+ residual = hidden_states
538
+
539
+ hidden_states = self.input_layernorm(hidden_states)
540
+
541
+ # Self Attention
542
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
543
+ hidden_states=hidden_states,
544
+ attention_mask=attention_mask,
545
+ past_key_value=past_key_value,
546
+ output_attentions=output_attentions,
547
+ use_cache=use_cache,
548
+ cache_position=cache_position,
549
+ position_embeddings=position_embeddings,
550
+ **kwargs,
551
+ )
552
+ hidden_states = residual + hidden_states
553
+
554
+ # Fully Connected
555
+ residual = hidden_states
556
+ hidden_states = self.post_attention_layernorm(hidden_states)
557
+ hidden_states = self.mlp(hidden_states)
558
+ hidden_states = residual + hidden_states
559
+
560
+ outputs = (hidden_states,)
561
+
562
+ if output_attentions:
563
+ outputs += (self_attn_weights,)
564
+
565
+ if use_cache:
566
+ outputs += (present_key_value,)
567
+
568
+ return outputs
models/nextstep_model.py ADDED
@@ -0,0 +1,553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import inspect
4
+ from loguru import logger
5
+ from dataclasses import dataclass
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ from torch.nn import CrossEntropyLoss
10
+
11
+ from safetensors.torch import safe_open
12
+ from transformers.modeling_utils import PreTrainedModel
13
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
14
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
15
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
16
+
17
+ from models.config import NextStepConfig
18
+ from models.llama_model import LlamaDecoderLayer, LlamaRMSNorm, LlamaRotaryEmbedding
19
+ from models.heads import FlowMatchingHead
20
+ from utils.misc import LargeInt
21
+ from utils.compile_utils import smart_compile
22
+ from utils.model_utils import get_2d_sincos_pos_embed
23
+
24
+
25
+ @dataclass
26
+ class NextStepOutputWithPast(CausalLMOutputWithPast):
27
+ lm_loss: torch.FloatTensor | None = None
28
+ im_loss: torch.FloatTensor | None = None
29
+
30
+
31
+ class NextStepPreTrainedModel(PreTrainedModel):
32
+ config_class = NextStepConfig
33
+ supports_gradient_checkpointing = True
34
+ _no_split_modules = ["LlamaDecoderLayer"]
35
+ _skip_keys_device_placement = ["past_key_values"]
36
+ _supports_flash_attn_2 = True
37
+ _supports_sdpa = True
38
+ _supports_cache_class = True
39
+ _supports_quantized_cache = True
40
+ _supports_static_cache = True
41
+
42
+ def _init_weights(self, module):
43
+ std = self.config.initializer_range
44
+ if isinstance(module, nn.Linear):
45
+ module.weight.data.normal_(mean=0.0, std=std)
46
+ if module.bias is not None:
47
+ module.bias.data.zero_()
48
+ elif isinstance(module, nn.Embedding):
49
+ module.weight.data.normal_(mean=0.0, std=std)
50
+ if module.padding_idx is not None:
51
+ module.weight.data[module.padding_idx].zero_()
52
+
53
+ @property
54
+ def trainable_params(self) -> float:
55
+ n_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
56
+ return LargeInt(n_params)
57
+
58
+
59
+ class NextStep(NextStepPreTrainedModel):
60
+
61
+ def __init__(self, config: NextStepConfig):
62
+ super().__init__(config)
63
+ self.padding_idx = config.pad_token_id
64
+ self.vocab_size = config.vocab_size
65
+
66
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
67
+
68
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
69
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
70
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
71
+
72
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
73
+
74
+ self.gradient_checkpointing = False
75
+
76
+ # Initialize weights and apply final processing
77
+ self.post_init()
78
+
79
+ token_dim = self.config.latent_channels * self.config.latent_patch_size**2
80
+
81
+ self.image_in_projector = nn.Linear(token_dim, config.hidden_size)
82
+ self.image_in_projector.weight.data.normal_(mean=0.0, std=config.initializer_range)
83
+ self.image_in_projector.bias.data.zero_()
84
+
85
+ self.image_out_projector = nn.Linear(config.hidden_size, config.hidden_size)
86
+ self.image_out_projector.weight.data.normal_(mean=0.0, std=config.initializer_range)
87
+ self.image_out_projector.bias.data.zero_()
88
+
89
+ self.image_head = FlowMatchingHead(
90
+ input_dim=token_dim,
91
+ cond_dim=config.hidden_size,
92
+ dim=config.fm_head_dim,
93
+ layers=config.fm_head_layers,
94
+ )
95
+
96
+ if config.use_gen_pos_embed:
97
+ self.init_gen_pos_embed()
98
+
99
+ def init_gen_pos_embed(self):
100
+ self.register_buffer(
101
+ "gen_pos_embed",
102
+ torch.from_numpy(
103
+ get_2d_sincos_pos_embed(
104
+ self.config.hidden_size, self.config.base_image_grid_size
105
+ )
106
+ ).float().unsqueeze(0),
107
+ )
108
+
109
+ def gen_pos_embed_with_ar(self, h, w):
110
+ bsz, hw, dim = self.gen_pos_embed.shape
111
+ gen_pos_embed = self.gen_pos_embed.reshape(bsz, int(hw**0.5), int(hw**0.5), dim)
112
+ gen_pos_embed = gen_pos_embed[:, :h, :w, :]
113
+ gen_pos_embed = gen_pos_embed.reshape(bsz, -1, dim)
114
+ return gen_pos_embed
115
+
116
+ @property
117
+ def image_size(self):
118
+ return self.config.image_size
119
+
120
+ @property
121
+ def image_patch_size(self):
122
+ return self.config.patch_size
123
+
124
+ @property
125
+ def image_grid_size(self):
126
+ return round(self.image_size / self.image_patch_size)
127
+
128
+ def get_input_embeddings(self):
129
+ return self.embed_tokens
130
+
131
+ def set_input_embeddings(self, value):
132
+ self.embed_tokens = value
133
+
134
+ def get_output_embeddings(self):
135
+ return self.lm_head
136
+
137
+ def set_output_embeddings(self, new_embeddings):
138
+ self.lm_head = new_embeddings
139
+
140
+ def load_lm_head(self, lm_head_dir: str | None = None):
141
+ index_json_file = os.path.join(lm_head_dir, "model.safetensors.index.json")
142
+ head_weight_name = "lm_head.weight" if not self.config.tie_word_embeddings else "model.embed_tokens.weight"
143
+ if os.path.exists(index_json_file):
144
+ with open(index_json_file, "r") as f:
145
+ index = json.load(f)
146
+ model_name = index["weight_map"][head_weight_name]
147
+ else:
148
+ model_name = "model.safetensors"
149
+ with safe_open(os.path.join(lm_head_dir, model_name), framework="pt") as f:
150
+ loaded_weight = f.get_tensor(head_weight_name)
151
+ loaded_weight = loaded_weight.to(dtype=self.lm_head.weight.dtype, device=self.lm_head.weight.device)
152
+ self.lm_head.weight.data.copy_(loaded_weight)
153
+
154
+ def patchify(self, img: torch.Tensor):
155
+ """
156
+ img: (bsz, C, H, W)
157
+ x: (bsz, H * W / patch_size**2, patch_size**2 * C)
158
+ """
159
+ bsz, c, h, w = img.shape
160
+ p = self.config.latent_patch_size
161
+ h_, w_ = h // p, w // p
162
+
163
+ img = img.reshape(bsz, c, h_, p, w_, p)
164
+ img = torch.einsum("nchpwq->nhwcpq", img)
165
+ x = img.reshape(bsz, h_ * w_, c * p**2)
166
+ return x
167
+
168
+ def unpatchify(self, x: torch.Tensor, h: int = None, w: int = None):
169
+ """
170
+ x: (bsz, H * W / patch_size**2, patch_size**2 * C)
171
+ img: (bsz, C, H, W)
172
+ """
173
+ bsz = x.shape[0]
174
+ p = self.config.latent_patch_size
175
+ c = self.config.latent_channels
176
+ if h is None and w is None:
177
+ h_ = w_ = int(x.shape[1] ** 0.5)
178
+ else:
179
+ h_, w_ = h, w
180
+ assert h_ * w_ == x.shape[1], f"Invalid sequence length {x.shape[1]}."
181
+
182
+ x = x.reshape(bsz, h_, w_, c, p, p)
183
+ x = torch.einsum("nhwcpq->nchpwq", x)
184
+ img = x.reshape(bsz, c, h_ * p, w_ * p)
185
+ return img
186
+
187
+ def prepare_inputs_embeds(self, input_ids: torch.LongTensor | None = None, latents: torch.FloatTensor | None = None):
188
+ if latents is None:
189
+ if not self.training:
190
+ return self.embed_tokens(input_ids)
191
+ else: # dummy forward for image pass, for the consistent shape of gradient.
192
+ raise NotImplementedError("Dummy forward for image pass is not implemented.")
193
+ else:
194
+ bs, seq_length = input_ids.shape
195
+ inputs_embeds = torch.zeros(
196
+ (bs, seq_length, self.config.hidden_size),
197
+ device=self.embed_tokens.weight.device,
198
+ dtype=self.embed_tokens.weight.dtype,
199
+ )
200
+ im_indices = input_ids == self.config.image_placeholder_id
201
+ lm_indices = ~im_indices
202
+
203
+ if isinstance(latents, list):
204
+ tokens = torch.cat([self.patchify(latent) for latent in latents], dim=1)
205
+ else:
206
+ tokens = self.patchify(latents)
207
+ # tokens = tokens.reshape(1, -1, tokens.shape[-1])
208
+
209
+ image_embeds = self.image_in_projector(tokens)
210
+ image_embeds = image_embeds.view(-1, self.config.hidden_size)
211
+
212
+ token_embeds = self.embed_tokens(input_ids[lm_indices])
213
+
214
+ inputs_embeds[im_indices] = image_embeds.to(inputs_embeds.dtype)
215
+ inputs_embeds[lm_indices] = token_embeds
216
+
217
+ return inputs_embeds
218
+
219
+ def _update_causal_mask(
220
+ self,
221
+ attention_mask: torch.Tensor,
222
+ input_tensor: torch.Tensor,
223
+ cache_position: torch.Tensor,
224
+ past_key_values: Cache,
225
+ output_attentions: bool,
226
+ ):
227
+ if self.config._attn_implementation == "flash_attention_2":
228
+ if attention_mask is not None and (attention_mask == 0.0).any():
229
+ return attention_mask
230
+ return None
231
+
232
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
233
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
234
+ # to infer the attention mask.
235
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
236
+ using_static_cache = isinstance(past_key_values, StaticCache)
237
+
238
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
239
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
240
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
241
+ attention_mask,
242
+ inputs_embeds=input_tensor,
243
+ past_key_values_length=past_seen_tokens,
244
+ is_training=self.training,
245
+ ):
246
+ return None
247
+
248
+ dtype, device = input_tensor.dtype, input_tensor.device
249
+ sequence_length = input_tensor.shape[1]
250
+ if using_static_cache:
251
+ target_length = past_key_values.get_max_cache_shape()
252
+ else:
253
+ target_length = (
254
+ attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1
255
+ )
256
+
257
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
258
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
259
+ attention_mask,
260
+ sequence_length=sequence_length,
261
+ target_length=target_length,
262
+ dtype=dtype,
263
+ device=device,
264
+ cache_position=cache_position,
265
+ batch_size=input_tensor.shape[0],
266
+ )
267
+
268
+ if (
269
+ self.config._attn_implementation == "sdpa"
270
+ and attention_mask is not None
271
+ and attention_mask.device.type == "cuda"
272
+ and not output_attentions
273
+ ):
274
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
275
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
276
+ # Details: https://github.com/pytorch/pytorch/issues/110213
277
+ min_dtype = torch.finfo(dtype).min
278
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
279
+
280
+ return causal_mask
281
+
282
+ @staticmethod
283
+ def _prepare_4d_causal_attention_mask_with_cache_position(
284
+ attention_mask: torch.Tensor,
285
+ sequence_length: int,
286
+ target_length: int,
287
+ dtype: torch.dtype,
288
+ device: torch.device,
289
+ cache_position: torch.Tensor,
290
+ batch_size: int,
291
+ **kwargs,
292
+ ):
293
+ """
294
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
295
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
296
+
297
+ Args:
298
+ attention_mask (`torch.Tensor`):
299
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
300
+ `(batch_size, 1, query_length, key_value_length)`.
301
+ sequence_length (`int`):
302
+ The sequence length being processed.
303
+ target_length (`int`):
304
+ The target length: when generating with static cache, the mask should be as long as the static cache,
305
+ to account for the 0 padding, the part of the cache that is not filled yet.
306
+ dtype (`torch.dtype`):
307
+ The dtype to use for the 4D attention mask.
308
+ device (`torch.device`):
309
+ The device to plcae the 4D attention mask on.
310
+ cache_position (`torch.Tensor`):
311
+ Indices depicting the position of the input sequence tokens in the sequence.
312
+ batch_size (`torch.Tensor`):
313
+ Batch size.
314
+ """
315
+ if attention_mask is not None and attention_mask.dim() == 4:
316
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
317
+ causal_mask = attention_mask
318
+ else:
319
+ min_dtype = torch.finfo(dtype).min
320
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
321
+ if sequence_length != 1:
322
+ causal_mask = torch.triu(causal_mask, diagonal=1)
323
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
324
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
325
+ if attention_mask is not None:
326
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
327
+ mask_length = attention_mask.shape[-1]
328
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
329
+ padding_mask = padding_mask == 0
330
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(padding_mask, min_dtype)
331
+
332
+ return causal_mask
333
+
334
+ @smart_compile()
335
+ def forward_model(
336
+ self,
337
+ inputs_embeds: torch.FloatTensor | None = None,
338
+ attention_mask: torch.Tensor | None = None,
339
+ past_key_values: Cache | list[torch.FloatTensor] | None = None,
340
+ use_cache: bool | None = None,
341
+ output_attentions: bool | None = None,
342
+ output_hidden_states: bool | None = None,
343
+ cache_position: torch.LongTensor | None = None,
344
+ ) -> tuple | BaseModelOutputWithPast:
345
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
346
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
347
+
348
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
349
+ if self.gradient_checkpointing and self.training and use_cache:
350
+ use_cache = False
351
+
352
+ if use_cache and past_key_values is None:
353
+ past_key_values = DynamicCache()
354
+
355
+ if cache_position is None:
356
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
357
+ cache_position = torch.arange(
358
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
359
+ )
360
+ position_ids = cache_position.unsqueeze(0)
361
+
362
+ causal_mask = self._update_causal_mask(
363
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
364
+ )
365
+ hidden_states = inputs_embeds
366
+
367
+ # create position embeddings to be shared across the decoder layers
368
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
369
+
370
+ # decoder layers
371
+ all_hidden_states = () if output_hidden_states else None
372
+ all_self_attns = () if output_attentions else None
373
+
374
+ for decoder_layer in self.layers:
375
+ if output_hidden_states:
376
+ all_hidden_states += (hidden_states,)
377
+
378
+ if self.gradient_checkpointing and self.training:
379
+ layer_outputs = self._gradient_checkpointing_func(
380
+ decoder_layer.__call__,
381
+ hidden_states,
382
+ causal_mask,
383
+ past_key_values,
384
+ output_attentions,
385
+ use_cache,
386
+ cache_position,
387
+ position_embeddings,
388
+ )
389
+ else:
390
+ layer_outputs = decoder_layer(
391
+ hidden_states,
392
+ attention_mask=causal_mask,
393
+ past_key_value=past_key_values,
394
+ output_attentions=output_attentions,
395
+ use_cache=use_cache,
396
+ cache_position=cache_position,
397
+ position_embeddings=position_embeddings,
398
+ )
399
+
400
+ hidden_states = layer_outputs[0]
401
+
402
+ if output_attentions:
403
+ all_self_attns += (layer_outputs[1],)
404
+
405
+ hidden_states = self.norm(hidden_states)
406
+
407
+ # add hidden states from the last decoder layer
408
+ if output_hidden_states:
409
+ all_hidden_states += (hidden_states,)
410
+
411
+ return BaseModelOutputWithPast(
412
+ last_hidden_state=hidden_states,
413
+ past_key_values=past_key_values if use_cache else None,
414
+ hidden_states=all_hidden_states,
415
+ attentions=all_self_attns,
416
+ )
417
+
418
+
419
+
420
+ def prepare_inputs_for_generation(
421
+ self,
422
+ input_ids: torch.LongTensor,
423
+ past_key_values: Cache | None = None,
424
+ attention_mask: torch.LongTensor | None = None,
425
+ inputs_embeds: torch.FloatTensor | None = None,
426
+ cache_position: torch.LongTensor | None = None,
427
+ **kwargs,
428
+ ):
429
+ """
430
+ Prepare the model inputs for generation. In includes operations like computing the 4D attention mask or
431
+ slicing inputs given the existing cache.
432
+
433
+ See the forward pass in the model documentation for expected arguments (different models might have different
434
+ requirements for e.g. `past_key_values`). This function should work as is for most LLMs.
435
+ """
436
+
437
+ # 1. Handle BC:
438
+ model_inputs = {}
439
+ # - some models don't have `Cache` support (which implies they don't expect `cache_position` in `forward`)
440
+ if self._supports_cache_class:
441
+ model_inputs["cache_position"] = cache_position
442
+ # - `cache_position` was not a mandatory input in `prepare_inputs_for_generation` for those models, and this
443
+ # function may be called outside of `generate`. Handle most use cases by creating `cache_position` on the fly
444
+ # (this alternative is not as robust as calling `generate` and letting it create `cache_position`)
445
+ elif cache_position is None:
446
+ past_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
447
+ cache_position = torch.arange(past_length, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
448
+
449
+ # 2. Generic cache-dependent input preparation
450
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
451
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
452
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
453
+ # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case
454
+ if past_key_values is not None:
455
+ model_inputs["past_key_values"] = past_key_values
456
+ if inputs_embeds is not None or cache_position[-1] >= input_ids.shape[1]: # Exception 1 or Exception 3
457
+ input_ids = input_ids[:, -cache_position.shape[0] :]
458
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
459
+ input_ids = input_ids[:, cache_position]
460
+
461
+ # 3. Prepare base model inputs
462
+ input_ids_key = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
463
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
464
+ if not self.config.is_encoder_decoder:
465
+ if inputs_embeds is not None and cache_position[0] == 0:
466
+ model_inputs[input_ids_key] = None
467
+ model_inputs["inputs_embeds"] = inputs_embeds
468
+ else:
469
+ # `clone` calls in this function ensure a consistent stride. See #32227
470
+ model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)
471
+ model_inputs["inputs_embeds"] = None
472
+ else:
473
+ model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)
474
+
475
+ # 4. Create missing `position_ids` on the fly
476
+ if (
477
+ attention_mask is not None
478
+ and kwargs.get("position_ids") is None
479
+ and "position_ids" in set(inspect.signature(self.forward).parameters.keys())
480
+ ):
481
+ position_ids = attention_mask.long().cumsum(-1) - 1
482
+ position_ids.masked_fill_(attention_mask == 0, 1)
483
+ kwargs["position_ids"] = position_ids # placed in kwargs for further processing (see below)
484
+
485
+ # 5. Slice model inputs if it's an input that should have the same length as `input_ids`
486
+ for model_input_name in ["position_ids", "token_type_ids"]:
487
+ model_input = kwargs.get(model_input_name)
488
+ if model_input is not None:
489
+ if past_key_values:
490
+ model_input = model_input[:, -input_ids.shape[1] :]
491
+ model_input = model_input.clone(memory_format=torch.contiguous_format)
492
+ model_inputs[model_input_name] = model_input
493
+
494
+ # 6. Create 4D attention mask is we are using a `StaticCache` (important for performant compiled forward pass)
495
+ if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
496
+ if model_inputs["inputs_embeds"] is not None:
497
+ batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
498
+ device = model_inputs["inputs_embeds"].device
499
+ else:
500
+ batch_size, sequence_length = model_inputs[input_ids_key].shape
501
+ device = model_inputs[input_ids_key].device
502
+
503
+ # Create the causal mask with fixed shape in advance, to reduce recompilations. If the function to create
504
+ # the 4D causal mask exists, it should be present in the base model (XXXModel class).
505
+ base_model = getattr(self, self.base_model_prefix, None)
506
+ if base_model is None:
507
+ causal_mask_creation_function = getattr(self, "_prepare_4d_causal_attention_mask_with_cache_position", None)
508
+ else:
509
+ causal_mask_creation_function = getattr(
510
+ base_model, "_prepare_4d_causal_attention_mask_with_cache_position", None
511
+ )
512
+ if causal_mask_creation_function is None:
513
+ logger.warning_once(
514
+ f"{self.__class__.__name__} has no `_prepare_4d_causal_attention_mask_with_cache_position` method "
515
+ "defined in its base modeling class. Compiled forward passes will be sub-optimal. If you're "
516
+ "writing code, see Llama for an example implementation. If you're a user, please report this "
517
+ "issue on GitHub."
518
+ )
519
+ else:
520
+ attention_mask = causal_mask_creation_function(
521
+ attention_mask,
522
+ sequence_length=sequence_length,
523
+ target_length=past_key_values.get_max_cache_shape(),
524
+ dtype=self.dtype,
525
+ device=device,
526
+ cache_position=cache_position,
527
+ batch_size=batch_size,
528
+ config=self.config,
529
+ past_key_values=past_key_values,
530
+ )
531
+ if attention_mask is not None:
532
+ model_inputs["attention_mask"] = attention_mask
533
+
534
+ # 7. Forward ALL kwargs that are uninitialized (e.g. `use_cache`).
535
+ for key, value in kwargs.items():
536
+ if key not in model_inputs:
537
+ model_inputs[key] = value
538
+
539
+ # 8. Remove unexpected `generate` inputs (TODO @joao: fix trainer and examples)
540
+ model_inputs.pop("labels", None)
541
+ return model_inputs
542
+
543
+ @torch.no_grad()
544
+ def generate(self, inputs: torch.LongTensor = None, **kwargs):
545
+ input_ids = kwargs.pop("input_ids")
546
+ latents = kwargs.pop("latents", None)
547
+ inputs_embeds = self.prepare_inputs_embeds(input_ids, latents)
548
+ return super().generate(inputs=inputs, input_ids=input_ids, inputs_embeds=inputs_embeds, **kwargs)
549
+
550
+ def gradient_checkpointing_enable(self, **kwargs):
551
+ super().gradient_checkpointing_enable(**kwargs)
552
+
553
+ self.image_head.net.grad_checkpointing = True
pytorch-model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c53c995d71566ae0cedc0f2e405db0bd71543d34e253e1f180c0bc58985404a3
3
+ size 9962132680
pytorch-model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1c3b95aa05095eb482494102594d25647a6d4e5963ecde87de7b1a7d6bb0e2e
3
+ size 9909693448
pytorch-model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f13b038eea5b0f797b927202d562801d35a8e998fd149e0e6c3035c988eaba7c
3
+ size 8478742432
pytorch-model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f990b56fcaa144772b37626cec841d519a62662d74fba20e9102a55cb2e7b638
3
+ size 1557135464
requirements.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ diffusers==0.34.0
2
+ einops==0.8.1
3
+ gradio==5.42.0
4
+ loguru==0.7.3
5
+ numpy==1.26.4
6
+ omegaconf==2.3.0
7
+ Pillow==11.0.0
8
+ Requests==2.32.4
9
+ safetensors==0.5.3
10
+ tabulate==0.9.0
11
+ torch==2.5.1
12
+ torchvision==0.20.1
13
+ tqdm==4.67.1
14
+ transformers==4.55.0
special_tokens_map.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|image_area|>",
4
+ "<|begin_of_image|>",
5
+ "<|end_of_image|>",
6
+ "<|image_placeholder|>",
7
+ "<|begin_of_prompt_refinement|>",
8
+ "<|end_of_prompt_refinement|>",
9
+ "<|begin_of_thinking|>",
10
+ "<|end_of_thinking|>"
11
+ ],
12
+ "eos_token": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ },
19
+ "pad_token": {
20
+ "content": "[PAD]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ }
26
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a0cb05912073d41a5b70def44dfe1f4331bfae17a7f5b80873ef966f19dd2c8
3
+ size 11423661
tokenizer_config.json ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "[PAD]",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "151666": {
190
+ "content": "<|image_area|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "151667": {
198
+ "content": "<|begin_of_image|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "151668": {
206
+ "content": "<|end_of_image|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "151669": {
214
+ "content": "<|image_placeholder|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "151670": {
222
+ "content": "<|begin_of_prompt_refinement|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "151671": {
230
+ "content": "<|end_of_prompt_refinement|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "151672": {
238
+ "content": "<|begin_of_thinking|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "151673": {
246
+ "content": "<|end_of_thinking|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ }
253
+ },
254
+ "additional_special_tokens": [
255
+ "<|image_area|>",
256
+ "<|begin_of_image|>",
257
+ "<|end_of_image|>",
258
+ "<|image_placeholder|>",
259
+ "<|begin_of_prompt_refinement|>",
260
+ "<|end_of_prompt_refinement|>",
261
+ "<|begin_of_thinking|>",
262
+ "<|end_of_thinking|>"
263
+ ],
264
+ "bos_token": null,
265
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
266
+ "clean_up_tokenization_spaces": false,
267
+ "eos_token": "<|endoftext|>",
268
+ "errors": "replace",
269
+ "extra_special_tokens": {},
270
+ "model_max_length": 8192,
271
+ "pad_token": "[PAD]",
272
+ "padding_side": "right",
273
+ "split_special_tokens": false,
274
+ "tokenizer_class": "Qwen2Tokenizer",
275
+ "unk_token": null
276
+ }
utils/aspect_ratio.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import PIL.Image
3
+
4
+ ANY_ASPECT_RATIO = (0, 0)
5
+
6
+ HW_ASPECT_RATIOS = [
7
+ (8, 32), # 256
8
+ (9, 28), # 252
9
+ (10, 25), # 250
10
+ (11, 23), # 253
11
+ (12, 21), # 252
12
+ (13, 19), # 247
13
+ (14, 18), # 252
14
+ (15, 17), # 255
15
+ (16, 16), # 256
16
+ (17, 15), # 255
17
+ (18, 14), # 252
18
+ (19, 13), # 247
19
+ (21, 12), # 252
20
+ (23, 11), # 253
21
+ (25, 10), # 250
22
+ (28, 9), # 252
23
+ (32, 8), # 256
24
+ ]
25
+
26
+
27
+ def get_ar_base(ars: list[tuple[int, int]] = HW_ASPECT_RATIOS):
28
+ sqrt_products = [round(np.sqrt(h * w)) for h, w in ars]
29
+ return round(np.mean(sqrt_products))
30
+
31
+
32
+ def ar2str(h: int, w: int) -> str:
33
+ return f"{h}*{w}"
34
+
35
+
36
+ def str2ar(s: str) -> tuple[int, int]:
37
+ return tuple(map(int, s.split("*")))
38
+
39
+ def center_crop_arr_with_buckets(pil_image, ars: list[tuple[int, int]] = HW_ASPECT_RATIOS, crop=True, buckets: list[int] = [256, 512, 768, 1024]):
40
+ """
41
+ Center crop the image to match the closest aspect ratio from the provided list.
42
+
43
+ Args:
44
+ pil_image: PIL Image to be cropped
45
+ image_size: Target size for the smaller dimension
46
+ ars: List of aspect ratios as (height, width) tuples
47
+
48
+ Returns:
49
+ PIL Image cropped to the closest aspect ratio
50
+ """
51
+ # ar_base = get_ar_base(ars)
52
+ # Get current image dimensions
53
+ width, height = pil_image.size
54
+
55
+ buckets = sorted(buckets, reverse=True)
56
+ image_size = buckets[-1]
57
+
58
+ for bucket in buckets:
59
+ if width * height >= bucket * bucket:
60
+ image_size = bucket
61
+ break
62
+
63
+ return center_crop_arr_with_ar(pil_image, image_size, ars, crop)
64
+
65
+ def center_crop_arr_with_ar(pil_image, image_size: int, ars: list[tuple[int, int]] = HW_ASPECT_RATIOS, crop=True):
66
+ """
67
+ Center crop the image to match the closest aspect ratio from the provided list.
68
+
69
+ Args:
70
+ pil_image: PIL Image to be cropped
71
+ image_sizes: Target size for the smaller dimension
72
+ ars: List of aspect ratios as (height, width) tuples
73
+
74
+ Returns:
75
+ PIL Image cropped to the closest aspect ratio
76
+ """
77
+
78
+ ar_base = get_ar_base(ars)
79
+ assert image_size % ar_base == 0, f"image_size must be divisible by {ar_base}"
80
+
81
+ # Get current image dimensions
82
+ width, height = pil_image.size
83
+
84
+ current_ar = height / width
85
+
86
+ # Find the closest aspect ratio
87
+ closest_ar_idx = np.argmin([abs(current_ar - (h / w)) for h, w in ars])
88
+ target_h, target_w = ars[closest_ar_idx]
89
+
90
+ if crop:
91
+ target_h, target_w = round(image_size / ar_base * target_h), round(image_size / ar_base * target_w)
92
+
93
+ # First, resize the image while maintaining aspect ratio to ensure the smaller dimension is at least the target size
94
+ scale = max(target_h / height, target_w / width)
95
+ new_height = round(height * scale)
96
+ new_width = round(width * scale)
97
+ pil_image = pil_image.resize((new_width, new_height), resample=PIL.Image.LANCZOS)
98
+
99
+ arr = np.array(pil_image)
100
+ # Then perform center crop to the target dimensions
101
+ crop_y = (new_height - target_h) // 2
102
+ crop_x = (new_width - target_w) // 2
103
+
104
+ return PIL.Image.fromarray(arr[crop_y : crop_y + target_h, crop_x : crop_x + target_w])
105
+ else:
106
+ scale = image_size // ar_base
107
+ return pil_image.resize((round(target_w * scale), round(target_h * scale)), resample=PIL.Image.LANCZOS)
utils/compile_utils.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ import functools
3
+ import os
4
+ from typing import Callable, Dict, Optional
5
+
6
+ import torch
7
+
8
+ from loguru import logger
9
+
10
+ """
11
+ Usage:
12
+
13
+ 1. Control through environment variable (at startup):
14
+ export TORCH_COMPILE_ENABLE=true
15
+ python your_script.py
16
+
17
+ 2. Control through environment variable (disable):
18
+ export TORCH_COMPILE_ENABLE=false # or not set
19
+ python your_script.py
20
+
21
+ 3. Dynamically control in code:
22
+ compile_manager.set_compile_enabled(True) # enable
23
+ compile_manager.set_compile_enabled(False) # disable
24
+
25
+ 4. Select version at runtime:
26
+ # use the version configured
27
+ result = my_function(args)
28
+
29
+ # force use the original version
30
+ result = my_function.original(args)
31
+
32
+ # force use the compiled version
33
+ result = my_function.compiled(args)
34
+ """
35
+
36
+ # Global configuration: control whether to enable compile through environment variables
37
+ # Default set this env to true
38
+ ENABLE_TORCH_COMPILE = os.getenv("ENABLE_TORCH_COMPILE", "false").lower() == "true"
39
+
40
+
41
+ class CompileManager:
42
+ """Global controller for torch.compile"""
43
+
44
+ def __init__(self):
45
+ self.compile_enabled = ENABLE_TORCH_COMPILE
46
+ self.compiled_functions: Dict[str, Callable] = {}
47
+ self.original_functions: Dict[str, Callable] = {}
48
+
49
+ def set_compile_enabled(self, enabled: bool):
50
+ """Dynamic setting of whether to enable compile"""
51
+ self.compile_enabled = enabled
52
+
53
+ def get_compile_status(self):
54
+ """Get the current compile status"""
55
+ return self.compile_enabled
56
+
57
+ @contextlib.contextmanager
58
+ def compile_disabled(self):
59
+ """Temporarily disable compile within the context"""
60
+ original_status = self.compile_enabled
61
+ try:
62
+ self.compile_enabled = False
63
+ yield
64
+ finally:
65
+ self.compile_enabled = original_status
66
+
67
+
68
+ # global instance
69
+ compile_manager = CompileManager()
70
+
71
+
72
+ def smart_compile(func: Optional[Callable] = None, **compile_kwargs):
73
+ """
74
+ Smart compile decorator
75
+
76
+ Args:
77
+ func: The function to decorate
78
+ **compile_kwargs: Other compile parameters, see https://pytorch.org/docs/stable/generated/torch.compile.html
79
+ """
80
+
81
+ def decorator(fn: Callable) -> Callable:
82
+ # save the original function
83
+ original_func = fn
84
+ # Use qualified name to handle functions with same name in different classes
85
+ # Include module name to handle functions with same name in different files
86
+ func_name = f"{fn.__module__}.{fn.__qualname__}"
87
+ compile_manager.original_functions[func_name] = original_func
88
+
89
+ # if compile is disabled, return the original function
90
+ if not compile_manager.compile_enabled:
91
+ # add attributes to the original function for later access
92
+ original_func.original = original_func
93
+ original_func.compiled = original_func # point to itself
94
+ return original_func
95
+
96
+ # create the compiled function
97
+ try:
98
+ compiled_func = torch.compile(original_func, **compile_kwargs)
99
+ compile_manager.compiled_functions[func_name] = compiled_func
100
+ except Exception as e:
101
+ logger.warning(f"[WARNING] Failed to compile function {func_name}: {e}")
102
+ # if compile fails, revert to the original function
103
+ compiled_func = original_func
104
+
105
+ @functools.wraps(original_func)
106
+ def wrapper(*args, **kwargs):
107
+ # check whether to use the compiled version at runtime
108
+ if compile_manager.compile_enabled:
109
+ return compiled_func(*args, **kwargs)
110
+ else:
111
+ return original_func(*args, **kwargs)
112
+
113
+ # add attributes to the wrapper for later access
114
+ wrapper.original = original_func
115
+ wrapper.compiled = compiled_func
116
+
117
+ return wrapper
118
+
119
+ # support direct use of @smart_compile or @smart_compile(...)
120
+ if func is not None:
121
+ return decorator(func)
122
+ return decorator
utils/image_utils.py ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+ from typing import Literal, TypeAlias
4
+
5
+ import numpy as np
6
+ import PIL.Image
7
+ import PIL.ImageOps
8
+ import requests
9
+ import torch
10
+
11
+ """
12
+ - pil: `PIL.Image.Image`, size (w, h), seamless conversion between `uint8`
13
+ - np: `np.ndarray`, shape (h, w, c), default `np.uint8`
14
+ - pt: `torch.Tensor`, shape (c, h, w), default `torch.uint8`
15
+ """
16
+ ImageType: TypeAlias = PIL.Image.Image | np.ndarray | torch.Tensor
17
+ ImageTypeStr: TypeAlias = Literal["pil", "np", "pt"]
18
+ ImageFormat: TypeAlias = Literal["JPEG", "PNG"]
19
+ DataFormat: TypeAlias = Literal["255", "01", "11"]
20
+
21
+
22
+ IMG_SUPPORT_MODE = ["L", "LA", "RGB", "RGBA", "CMYK", "P", "1"]
23
+ IMAGE_EXT_LOWER = ["png", "jpeg", "jpg", "webp"]
24
+ IMAGE_EXT = IMAGE_EXT_LOWER + [_ext.upper() for _ext in IMAGE_EXT_LOWER]
25
+
26
+
27
+ def check_image_type(image: ImageType):
28
+ if not (isinstance(image, PIL.Image.Image) or isinstance(image, np.ndarray) or isinstance(image, torch.Tensor)):
29
+ raise TypeError(f"`image` should be PIL Image, ndarray or Tensor. Got `{type(image)}`.")
30
+
31
+
32
+ def to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
33
+ # Automatically adjust the orientation of the image to match the direction it was taken.
34
+ image = PIL.ImageOps.exif_transpose(image)
35
+
36
+ if image.mode not in IMG_SUPPORT_MODE:
37
+ raise ValueError(f"Only support mode in `{IMG_SUPPORT_MODE}`, got `{image.mode}`")
38
+
39
+ if image.mode == "LA":
40
+ image = image.convert("RGBA")
41
+
42
+ # add white background for RGBA images, and convert to RGB
43
+ if image.mode == "RGBA":
44
+ background = PIL.Image.new("RGBA", image.size, "white")
45
+ image = PIL.Image.alpha_composite(background, image).convert("RGB")
46
+
47
+ # then convert to RGB
48
+ image = image.convert("RGB")
49
+
50
+ return image
51
+
52
+
53
+ def load_image(
54
+ image: str | os.PathLike | PIL.Image.Image | bytes,
55
+ *,
56
+ output_type: ImageTypeStr = "pil",
57
+ ) -> ImageType:
58
+ """
59
+ Loads `image` to a PIL Image, NumPy array or PyTorch tensor.
60
+
61
+ Args:
62
+ image (str | PIL.Image.Image): The path to image or PIL Image.
63
+ mode (ImageMode, optional): The mode to convert to. Defaults to None (no conversion).
64
+ The current version supports all possible conversions between "L", "RGB", "RGBA".
65
+ output_type (ImageTypeStr, optional): The type of the output image. Defaults to "pil".
66
+ The current version supports "pil", "np", "pt".
67
+
68
+ Returns:
69
+ ImageType: The loaded image in the given type.
70
+ """
71
+ timeout = 10
72
+ # Load the `image` into a PIL Image.
73
+ if isinstance(image, str) or isinstance(image, os.PathLike):
74
+ if image.startswith("http://") or image.startswith("https://"):
75
+ try:
76
+ image = PIL.Image.open(requests.get(image, stream=True, timeout=timeout).raw)
77
+ except requests.exceptions.Timeout:
78
+ raise ValueError(f"HTTP request timed out after {timeout} seconds")
79
+ elif os.path.isfile(image):
80
+ image = PIL.Image.open(image)
81
+ else:
82
+ raise ValueError(
83
+ f"Incorrect path or url, URLs must start with `http://`, `https://` or `s3+[profile]://`, and `{image}` is not a valid path."
84
+ )
85
+ elif isinstance(image, PIL.Image.Image):
86
+ image = image
87
+ elif isinstance(image, bytes):
88
+ image = PIL.Image.open(io.BytesIO(image))
89
+ else:
90
+ raise ValueError(f"`image` must be a path or PIL Image, got `{type(image)}`")
91
+
92
+ image = to_rgb(image)
93
+
94
+ if output_type == "pil":
95
+ image = image
96
+ elif output_type == "np":
97
+ image = to_np(image)
98
+ elif output_type == "pt":
99
+ image = to_pt(image)
100
+ else:
101
+ raise ValueError(f"`output_type` must be one of `{ImageTypeStr}`, got `{output_type}`")
102
+
103
+ return image
104
+
105
+
106
+ def to_pil(image: ImageType, image_mode: DataFormat | None = None) -> PIL.Image.Image:
107
+ """
108
+ Convert a NumPy array or a PyTorch tensor to a PIL image.
109
+ """
110
+ check_image_type(image)
111
+
112
+ if isinstance(image, PIL.Image.Image):
113
+ return image
114
+
115
+ elif isinstance(image, np.ndarray):
116
+ image = normalize_np(image, image_mode)
117
+
118
+ elif isinstance(image, torch.Tensor):
119
+ image = normalize_pt(image, image_mode)
120
+
121
+ image = image.cpu().permute(1, 2, 0).numpy()
122
+ assert image.dtype == np.uint8, f"Supposed to convert `torch.uint8` to `np.uint8`, but got `{image.dtype}`"
123
+
124
+ mode_map = {1: "L", 3: "RGB"}
125
+ mode = mode_map[image.shape[-1]]
126
+
127
+ if image.shape[-1] == 1:
128
+ image = image[:, :, 0]
129
+
130
+ return PIL.Image.fromarray(image, mode=mode)
131
+
132
+
133
+ def to_np(image: ImageType, image_mode: DataFormat | None = None) -> np.ndarray:
134
+ """
135
+ Convert a PIL image or a PyTorch tensor to a NumPy array.
136
+ """
137
+ check_image_type(image)
138
+
139
+ if isinstance(image, PIL.Image.Image):
140
+ image = np.array(image, np.uint8, copy=True)
141
+
142
+ if isinstance(image, np.ndarray):
143
+ image = normalize_np(image, image_mode)
144
+
145
+ elif isinstance(image, torch.Tensor):
146
+ image = normalize_pt(image, image_mode)
147
+
148
+ image = image.cpu().permute(1, 2, 0).numpy()
149
+ assert image.dtype == np.uint8, f"Supposed to convert `torch.uint8` to `np.uint8`, but got `{image.dtype}`"
150
+
151
+ return image
152
+
153
+
154
+ def to_pt(image: ImageType, image_mode: DataFormat | None = None) -> torch.Tensor:
155
+ """
156
+ Convert a PIL image or a NumPy array to a PyTorch tensor.
157
+ """
158
+ check_image_type(image)
159
+
160
+ if isinstance(image, torch.Tensor):
161
+ image = normalize_pt(image, image_mode)
162
+ return image
163
+
164
+ # convert PIL Image to NumPy array
165
+ if isinstance(image, PIL.Image.Image):
166
+ image = np.array(image, np.uint8, copy=True)
167
+
168
+ image = normalize_np(image, image_mode)
169
+
170
+ image = torch.from_numpy(image.transpose((2, 0, 1))).contiguous()
171
+ assert image.dtype == torch.uint8, f"Supposed to convert `np.uint8` to `torch.uint8`, but got `{image.dtype}`"
172
+ return image
173
+
174
+
175
+ def normalize_np(image: np.ndarray, image_mode: DataFormat | None = None) -> np.ndarray:
176
+ """
177
+ Normalize a NumPy array to the standard format of shape (h, w, c) and uint8.
178
+ """
179
+ if image.ndim not in {2, 3}:
180
+ raise ValueError(f"`image` should be 2 or 3 dimensions. Got {image.ndim} dimensions.")
181
+
182
+ elif image.ndim == 2:
183
+ # if 2D image, add channel dimension (HWC)
184
+ image = np.expand_dims(image, 2)
185
+
186
+ if image.shape[-1] not in {1, 3}:
187
+ raise ValueError(f"`image` should have 1 (`L`) or 3 (`RGB`) channels. Got {image.shape[-1]} channels.")
188
+
189
+ image = to_dataformat(image, image_mode=image_mode, mode="255")
190
+
191
+ return image
192
+
193
+
194
+ def normalize_pt(image: torch.Tensor, image_mode: DataFormat | None = None) -> torch.Tensor:
195
+ """
196
+ Normalize a PyTorch tensor to the standard format of shape (c, h, w) and uint8.
197
+ """
198
+ if image.ndimension() not in {2, 3}:
199
+ raise ValueError(f"`image` should be 2 or 3 dimensions. Got {image.ndimension()} dimensions.")
200
+
201
+ elif image.ndimension() == 2:
202
+ # if 2D image, add channel dimension (CHW)
203
+ image = image.unsqueeze(0)
204
+
205
+ # check number of channels
206
+ if image.shape[-3] not in {1, 3}:
207
+ raise ValueError(f"`image` should have 1 (`L`) or 3 (`RGB`) channels. Got {image.shape[-3]} channels.")
208
+
209
+ image = to_dataformat(image, image_mode=image_mode, mode="255")
210
+
211
+ return image
212
+
213
+
214
+ def to_dataformat(
215
+ image: ImageType,
216
+ *,
217
+ image_mode: DataFormat | None = None,
218
+ mode: DataFormat = "255",
219
+ ) -> np.ndarray | torch.Tensor:
220
+ check_image_type(image)
221
+
222
+ # convert PIL Image to NumPy array
223
+ if isinstance(image, PIL.Image.Image):
224
+ image = np.array(image, np.uint8, copy=True)
225
+ image_mode = "255"
226
+
227
+ # guess image mode
228
+ if image.dtype == np.uint8 or image.dtype == torch.uint8:
229
+ guess_image_mode = "255"
230
+ elif image.dtype == np.float32 or image.dtype == np.float16 or image.dtype == torch.float32 or image.dtype == torch.float16:
231
+ if image.min() < 0.0:
232
+ guess_image_mode = "11"
233
+ else:
234
+ guess_image_mode = "01"
235
+ else:
236
+ raise ValueError(f"Unsupported dtype `{image.dtype}`")
237
+
238
+ if image_mode is None:
239
+ image_mode = guess_image_mode
240
+ else:
241
+ if guess_image_mode != image_mode:
242
+ print(f"Guess image mode is `{guess_image_mode}`, but image mode is `{image_mode}`")
243
+
244
+ if isinstance(image, np.ndarray):
245
+ if image_mode == "255" and mode != "255":
246
+ np.clip((image.astype(np.float32) / 255), 0, 1, out=image)
247
+ if mode == "11":
248
+ np.clip((image * 2 - 1), -1, 1, out=image)
249
+
250
+ elif image_mode == "01" and mode != "01":
251
+ if mode == "255":
252
+ np.clip(image, 0, 1, out=image)
253
+ image = (image * 255).round().astype(np.uint8)
254
+ elif mode == "11":
255
+ np.clip((image * 2 - 1), -1, 1, out=image)
256
+
257
+ elif image_mode == "11" and mode != "11":
258
+ np.clip((image / 2 + 0.5), 0, 1, out=image)
259
+ if mode == "255":
260
+ image = (image * 255).round().astype(np.uint8)
261
+
262
+ elif isinstance(image, torch.Tensor):
263
+ if image_mode == "255" and mode != "255":
264
+ image = image.to(dtype=torch.float32).div(255).clamp(0, 1)
265
+ if mode == "11":
266
+ image = (image * 2 - 1).clamp(-1, 1)
267
+
268
+ elif image_mode == "01" and mode != "01":
269
+ if mode == "255":
270
+ image = image.clamp(0, 1)
271
+ image = (image * 255).round().to(dtype=torch.uint8)
272
+ elif mode == "11":
273
+ image = (image * 2 - 1).clamp(-1, 1)
274
+
275
+ elif image_mode == "11" and mode != "11":
276
+ image = (image / 2 + 0.5).clamp(0, 1)
277
+ if mode == "255":
278
+ image = image.mul(255).round().to(dtype=torch.uint8)
279
+
280
+ return image
281
+
282
+
283
+ def resize_image(pil_image, image_size):
284
+ while min(*pil_image.size) >= 2 * image_size:
285
+ pil_image = pil_image.resize(tuple(x // 2 for x in pil_image.size), resample=PIL.Image.BOX)
286
+
287
+ scale = image_size / min(*pil_image.size)
288
+ pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size), resample=PIL.Image.BICUBIC)
289
+ return pil_image
290
+
291
+
292
+ def center_crop_arr(pil_image, image_size, crop=True):
293
+ """
294
+ Center cropping implementation from ADM.
295
+ https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
296
+ """
297
+ if crop:
298
+ pil_image = resize_image(pil_image, image_size)
299
+ arr = np.array(pil_image)
300
+ crop_y = (arr.shape[0] - image_size) // 2
301
+ crop_x = (arr.shape[1] - image_size) // 2
302
+ return PIL.Image.fromarray(arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size])
303
+ else:
304
+ # 将图像填充为正方形
305
+ width, height = pil_image.size
306
+ if width != height:
307
+ # 创建一个正方形画布,尺寸为较大的边长
308
+ max_dim = max(width, height)
309
+ padded_img = PIL.Image.new(pil_image.mode, (max_dim, max_dim), (0, 0, 0))
310
+ # 将原图居中粘贴到正方形画布上
311
+ padded_img.paste(pil_image, ((max_dim - width) // 2, (max_dim - height) // 2))
312
+ pil_image = padded_img
313
+ pil_image = resize_image(pil_image, image_size)
314
+ return pil_image
utils/misc.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import random
4
+
5
+ import torch
6
+
7
+
8
+ def set_seed(seed: int, rank: int = 0):
9
+ random.seed(seed + rank)
10
+ np.random.seed(seed + rank)
11
+ torch.manual_seed(seed + rank)
12
+ torch.cuda.manual_seed_all(seed + rank)
13
+ torch.backends.cudnn.deterministic = True
14
+ os.environ["PYTHONHASHSEED"] = str(seed + rank)
15
+
16
+ class LargeInt(int):
17
+ def __new__(cls, value):
18
+ if isinstance(value, str):
19
+ units = {"K": 1e3, "M": 1e6, "B": 1e9, "T": 1e12}
20
+ last_char = value[-1].upper()
21
+ if last_char in units:
22
+ num = float(value[:-1]) * units[last_char]
23
+ return super(LargeInt, cls).__new__(cls, int(num))
24
+ else:
25
+ return super(LargeInt, cls).__new__(cls, int(value))
26
+ else:
27
+ return super(LargeInt, cls).__new__(cls, value)
28
+
29
+ def __str__(self):
30
+ value = int(self)
31
+ if abs(value) < 1000:
32
+ return f"{value}"
33
+ for unit in ["", "K", "M", "B", "T"]:
34
+ if abs(value) < 1000:
35
+ return f"{value:.1f}{unit}"
36
+ value /= 1000
37
+ return f"{value:.1f}P" # P stands for Peta, or 10^15
38
+
39
+ def __repr__(self):
40
+ return f'"{self.__str__()}"' # Ensure repr also returns the string with quotes
41
+
42
+ def __json__(self):
43
+ return f'"{self.__str__()}"'
44
+
45
+ def __add__(self, other):
46
+ if isinstance(other, int):
47
+ return LargeInt(super().__add__(other))
48
+ return NotImplemented
49
+
50
+ def __radd__(self, other):
51
+ return self.__add__(other) # This ensures commutativity
utils/model_utils.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, pe_interpolation=1.0):
6
+ """
7
+ grid_size: int of the grid height and width
8
+ return:
9
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
10
+ """
11
+ grid_h = np.arange(grid_size, dtype=np.float32) / pe_interpolation
12
+ grid_w = np.arange(grid_size, dtype=np.float32) / pe_interpolation
13
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
14
+ grid = np.stack(grid, axis=0)
15
+
16
+ grid = grid.reshape([2, 1, grid_size, grid_size])
17
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
18
+ if cls_token and extra_tokens > 0:
19
+ pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
20
+ return pos_embed
21
+
22
+
23
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
24
+ assert embed_dim % 2 == 0
25
+
26
+ # use half of dimensions to encode grid_h
27
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
28
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
29
+
30
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
31
+ return emb
32
+
33
+
34
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
35
+ """
36
+ embed_dim: output dimension for each position
37
+ pos: a list of positions to be encoded: size (M,)
38
+ out: (M, D)
39
+ """
40
+ assert embed_dim % 2 == 0
41
+ omega = np.arange(embed_dim // 2, dtype=np.float64)
42
+ omega /= embed_dim / 2.0
43
+ omega = 1.0 / 10000**omega # (D/2,)
44
+
45
+ pos = pos.reshape(-1) # (M,)
46
+ out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
47
+
48
+ emb_sin = np.sin(out) # (M, D/2)
49
+ emb_cos = np.cos(out) # (M, D/2)
50
+
51
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
52
+ return emb
53
+
54
+
55
+ def expand_t(t, x):
56
+ """Function to reshape time t to broadcastable dimension of x
57
+ Args:
58
+ t: [bsz,], time vector
59
+ x: [bsz,...], data point
60
+ """
61
+ dims = [1] * (len(x.size()) - 1)
62
+ t = t.view(t.size(0), *dims)
63
+ return t
64
+
65
+
66
+ def randn_tensor(shape, noise_repeat, device, dtype=torch.float32):
67
+ bsz = shape[0]
68
+ if bsz % noise_repeat != 0:
69
+ raise ValueError(f"Batch size ({bsz}) must be divisible by noise repeat ({noise_repeat})")
70
+ _shape = (noise_repeat,) + shape[1:]
71
+ _tensor = torch.randn(_shape, device=device, dtype=dtype).repeat(bsz // noise_repeat, 1)
72
+ return _tensor
73
+
74
+
75
+ def rotate_half(x):
76
+ """Rotates half the hidden dims of the input."""
77
+ x1 = x[..., : x.shape[-1] // 2]
78
+ x2 = x[..., x.shape[-1] // 2 :]
79
+ return torch.cat((-x2, x1), dim=-1)
80
+
81
+
82
+ def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
83
+ cos = cos.unsqueeze(unsqueeze_dim)
84
+ sin = sin.unsqueeze(unsqueeze_dim)
85
+ q_embed = (q * cos) + (rotate_half(q) * sin)
86
+ k_embed = (k * cos) + (rotate_half(k) * sin)
87
+ return q_embed, k_embed
88
+
89
+
90
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
91
+ """
92
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
93
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
94
+ """
95
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
96
+ if n_rep == 1:
97
+ return hidden_states
98
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
99
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
100
+
101
+
102
+ def identity(input: torch.Tensor, *args, **kwargs) -> torch.Tensor:
103
+ return input
104
+
105
+
106
+ def rms_norm(
107
+ input: torch.Tensor,
108
+ normalized_shape: torch.Size,
109
+ eps: float = 1e-6,
110
+ ) -> torch.Tensor:
111
+ dtype = input.dtype
112
+ input = input.to(torch.float32)
113
+ variance = input.flatten(-len(normalized_shape)).pow(2).mean(dim=-1)[(...,) + (None,) * len(normalized_shape)]
114
+ input = input * torch.rsqrt(variance + eps)
115
+ return input.to(dtype)
116
+
117
+
118
+ def layer_norm(
119
+ input: torch.Tensor,
120
+ normalized_shape: torch.Size,
121
+ eps: float = 1e-6,
122
+ ) -> torch.Tensor:
123
+ dtype = input.dtype
124
+ input = input.to(torch.float32)
125
+ mean = input.flatten(-len(normalized_shape)).mean(dim=-1)[(...,) + (None,) * len(normalized_shape)]
126
+ variance = (input - mean).flatten(-len(normalized_shape)).pow(2).mean(dim=-1)[(...,) + (None,) * len(normalized_shape)]
127
+ input = (input - mean) * torch.rsqrt(variance + eps)
128
+ return input.to(dtype)
vae/checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99293255229a29297e2851858db3794497d1b0b09b20c308c1062636ea4bcdd9
3
+ size 335365010
vae/config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "resolution": 256,
3
+ "in_channels": 3,
4
+ "ch": 128,
5
+ "out_ch": 3,
6
+ "ch_mult": [1, 2, 4, 4],
7
+ "num_res_blocks": 2,
8
+ "z_channels": 16,
9
+ "shift_factor": 0,
10
+ "scaling_factor": 1,
11
+ "deterministic": true,
12
+ "encoder_norm": true,
13
+ "psz": 1
14
+ }
vae/nextstep_ae.py ADDED
@@ -0,0 +1,494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import inspect
4
+ from dataclasses import dataclass, field, asdict
5
+ from loguru import logger
6
+ from omegaconf import OmegaConf
7
+ from tabulate import tabulate
8
+ from einops import rearrange
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ from torch import Tensor
14
+ from torch.utils.checkpoint import checkpoint
15
+
16
+ from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
17
+ from diffusers.models.modeling_outputs import AutoencoderKLOutput
18
+
19
+ from utils.misc import LargeInt
20
+ from utils.model_utils import randn_tensor
21
+ from utils.compile_utils import smart_compile
22
+
23
+
24
+ @dataclass
25
+ class AutoEncoderParams:
26
+ resolution: int = 256
27
+ in_channels: int = 3
28
+ ch: int = 128
29
+ out_ch: int = 3
30
+ ch_mult: list[int] = field(default_factory=lambda: [1, 2, 4, 4])
31
+ num_res_blocks: int = 2
32
+ z_channels: int = 16
33
+ scaling_factor: float = 0.3611
34
+ shift_factor: float = 0.1159
35
+ deterministic: bool = False
36
+ encoder_norm: bool = False
37
+ psz: int | None = None
38
+
39
+
40
+ def swish(x: Tensor) -> Tensor:
41
+ return x * torch.sigmoid(x)
42
+
43
+
44
+ class AttnBlock(nn.Module):
45
+ def __init__(self, in_channels: int):
46
+ super().__init__()
47
+ self.in_channels = in_channels
48
+
49
+ self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
50
+
51
+ self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
52
+ self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
53
+ self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
54
+ self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
55
+
56
+ def attention(self, h_: Tensor) -> Tensor:
57
+ h_ = self.norm(h_)
58
+ q = self.q(h_)
59
+ k = self.k(h_)
60
+ v = self.v(h_)
61
+
62
+ b, c, h, w = q.shape
63
+ q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
64
+ k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
65
+ v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
66
+ h_ = nn.functional.scaled_dot_product_attention(q, k, v)
67
+
68
+ return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
69
+
70
+ def forward(self, x: Tensor) -> Tensor:
71
+ return x + self.proj_out(self.attention(x))
72
+
73
+
74
+ class ResnetBlock(nn.Module):
75
+ def __init__(self, in_channels: int, out_channels: int):
76
+ super().__init__()
77
+ self.in_channels = in_channels
78
+ out_channels = in_channels if out_channels is None else out_channels
79
+ self.out_channels = out_channels
80
+
81
+ self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
82
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
83
+ self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
84
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
85
+ if self.in_channels != self.out_channels:
86
+ self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
87
+
88
+ def forward(self, x):
89
+ h = x
90
+ h = self.norm1(h)
91
+ h = swish(h)
92
+ h = self.conv1(h)
93
+
94
+ h = self.norm2(h)
95
+ h = swish(h)
96
+ h = self.conv2(h)
97
+
98
+ if self.in_channels != self.out_channels:
99
+ x = self.nin_shortcut(x)
100
+
101
+ return x + h
102
+
103
+
104
+ class Downsample(nn.Module):
105
+ def __init__(self, in_channels: int):
106
+ super().__init__()
107
+ # no asymmetric padding in torch conv, must do it ourselves
108
+ self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
109
+
110
+ def forward(self, x: Tensor):
111
+ pad = (0, 1, 0, 1)
112
+ x = nn.functional.pad(x, pad, mode="constant", value=0)
113
+ x = self.conv(x)
114
+ return x
115
+
116
+
117
+ class Upsample(nn.Module):
118
+ def __init__(self, in_channels: int):
119
+ super().__init__()
120
+ self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
121
+
122
+ def forward(self, x: Tensor):
123
+ x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
124
+ x = self.conv(x)
125
+ return x
126
+
127
+
128
+ class Encoder(nn.Module):
129
+ def __init__(
130
+ self,
131
+ resolution: int,
132
+ in_channels: int,
133
+ ch: int,
134
+ ch_mult: list[int],
135
+ num_res_blocks: int,
136
+ z_channels: int,
137
+ ):
138
+ super().__init__()
139
+ self.ch = ch
140
+ self.num_resolutions = len(ch_mult)
141
+ self.num_res_blocks = num_res_blocks
142
+ self.resolution = resolution
143
+ self.in_channels = in_channels
144
+ # downsampling
145
+ self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
146
+
147
+ curr_res = resolution
148
+ in_ch_mult = (1,) + tuple(ch_mult)
149
+ self.in_ch_mult = in_ch_mult
150
+ self.down = nn.ModuleList()
151
+ block_in = self.ch
152
+ for i_level in range(self.num_resolutions):
153
+ block = nn.ModuleList()
154
+ attn = nn.ModuleList()
155
+ block_in = ch * in_ch_mult[i_level]
156
+ block_out = ch * ch_mult[i_level]
157
+ for _ in range(self.num_res_blocks):
158
+ block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
159
+ block_in = block_out
160
+ down = nn.Module()
161
+ down.block = block
162
+ down.attn = attn
163
+ if i_level != self.num_resolutions - 1:
164
+ down.downsample = Downsample(block_in)
165
+ curr_res = curr_res // 2
166
+ self.down.append(down)
167
+
168
+ # middle
169
+ self.mid = nn.Module()
170
+ self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
171
+ self.mid.attn_1 = AttnBlock(block_in)
172
+ self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
173
+
174
+ # end
175
+ self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
176
+ self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
177
+
178
+ self.grad_checkpointing = False
179
+
180
+ @smart_compile()
181
+ def forward(self, x: Tensor) -> Tensor:
182
+ # downsampling
183
+ hs = [self.conv_in(x)]
184
+ for i_level in range(self.num_resolutions):
185
+ for i_block in range(self.num_res_blocks):
186
+ block_fn = self.down[i_level].block[i_block]
187
+ if self.grad_checkpointing:
188
+ h = checkpoint(block_fn, hs[-1])
189
+ else:
190
+ h = block_fn(hs[-1])
191
+ if len(self.down[i_level].attn) > 0:
192
+ attn_fn = self.down[i_level].attn[i_block]
193
+ if self.grad_checkpointing:
194
+ h = checkpoint(attn_fn, h)
195
+ else:
196
+ h = attn_fn(h)
197
+ hs.append(h)
198
+ if i_level != self.num_resolutions - 1:
199
+ hs.append(self.down[i_level].downsample(hs[-1]))
200
+
201
+ # middle
202
+ h = hs[-1]
203
+ h = self.mid.block_1(h)
204
+ h = self.mid.attn_1(h)
205
+ h = self.mid.block_2(h)
206
+ # end
207
+ h = self.norm_out(h)
208
+ h = swish(h)
209
+ h = self.conv_out(h)
210
+ return h
211
+
212
+
213
+ class Decoder(nn.Module):
214
+ def __init__(
215
+ self,
216
+ ch: int,
217
+ out_ch: int,
218
+ ch_mult: list[int],
219
+ num_res_blocks: int,
220
+ in_channels: int,
221
+ resolution: int,
222
+ z_channels: int,
223
+ ):
224
+ super().__init__()
225
+ self.ch = ch
226
+ self.num_resolutions = len(ch_mult)
227
+ self.num_res_blocks = num_res_blocks
228
+ self.resolution = resolution
229
+ self.in_channels = in_channels
230
+ self.ffactor = 2 ** (self.num_resolutions - 1)
231
+
232
+ # compute in_ch_mult, block_in and curr_res at lowest res
233
+ block_in = ch * ch_mult[self.num_resolutions - 1]
234
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
235
+ self.z_shape = (1, z_channels, curr_res, curr_res)
236
+
237
+ # z to block_in
238
+ self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
239
+
240
+ # middle
241
+ self.mid = nn.Module()
242
+ self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
243
+ self.mid.attn_1 = AttnBlock(block_in)
244
+ self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
245
+
246
+ # upsampling
247
+ self.up = nn.ModuleList()
248
+ for i_level in reversed(range(self.num_resolutions)):
249
+ block = nn.ModuleList()
250
+ attn = nn.ModuleList()
251
+ block_out = ch * ch_mult[i_level]
252
+ for _ in range(self.num_res_blocks + 1):
253
+ block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
254
+ block_in = block_out
255
+ up = nn.Module()
256
+ up.block = block
257
+ up.attn = attn
258
+ if i_level != 0:
259
+ up.upsample = Upsample(block_in)
260
+ curr_res = curr_res * 2
261
+ self.up.insert(0, up) # prepend to get consistent order
262
+
263
+ # end
264
+ self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
265
+ self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
266
+
267
+ self.grad_checkpointing = False
268
+
269
+ @smart_compile()
270
+ def forward(self, z: Tensor) -> Tensor:
271
+ # get dtype for proper tracing
272
+ upscale_dtype = next(self.up.parameters()).dtype
273
+
274
+ # z to block_in
275
+ h = self.conv_in(z)
276
+
277
+ # middle
278
+ h = self.mid.block_1(h)
279
+ h = self.mid.attn_1(h)
280
+ h = self.mid.block_2(h)
281
+
282
+ # cast to proper dtype
283
+ h = h.to(upscale_dtype)
284
+ # upsampling
285
+ for i_level in reversed(range(self.num_resolutions)):
286
+ for i_block in range(self.num_res_blocks + 1):
287
+ block_fn = self.up[i_level].block[i_block]
288
+ if self.grad_checkpointing:
289
+ h = checkpoint(block_fn, h)
290
+ else:
291
+ h = block_fn(h)
292
+ if len(self.up[i_level].attn) > 0:
293
+ attn_fn = self.up[i_level].attn[i_block]
294
+ if self.grad_checkpointing:
295
+ h = checkpoint(attn_fn, h)
296
+ else:
297
+ h = attn_fn(h)
298
+ if i_level != 0:
299
+ h = self.up[i_level].upsample(h)
300
+
301
+ # end
302
+ h = self.norm_out(h)
303
+ h = swish(h)
304
+ h = self.conv_out(h)
305
+ return h
306
+
307
+
308
+ def layer_norm_2d(input: torch.Tensor, normalized_shape: torch.Size, eps: float = 1e-6) -> torch.Tensor:
309
+ # input.shape = (bsz, c, h, w)
310
+ _input = input.permute(0, 2, 3, 1)
311
+ _input = F.layer_norm(_input, normalized_shape, None, None, eps)
312
+ _input = _input.permute(0, 3, 1, 2)
313
+ return _input
314
+
315
+
316
+ class AutoencoderKL(nn.Module):
317
+ def __init__(self, params: AutoEncoderParams):
318
+ super().__init__()
319
+ self.config = params
320
+ self.config = OmegaConf.create(asdict(self.config))
321
+ self.config.latent_channels = params.z_channels
322
+ self.config.block_out_channels = params.ch_mult
323
+
324
+ self.params = params
325
+ self.encoder = Encoder(
326
+ resolution=params.resolution,
327
+ in_channels=params.in_channels,
328
+ ch=params.ch,
329
+ ch_mult=params.ch_mult,
330
+ num_res_blocks=params.num_res_blocks,
331
+ z_channels=params.z_channels,
332
+ )
333
+ self.decoder = Decoder(
334
+ resolution=params.resolution,
335
+ in_channels=params.in_channels,
336
+ ch=params.ch,
337
+ out_ch=params.out_ch,
338
+ ch_mult=params.ch_mult,
339
+ num_res_blocks=params.num_res_blocks,
340
+ z_channels=params.z_channels,
341
+ )
342
+
343
+ self.encoder_norm = params.encoder_norm
344
+ self.psz = params.psz
345
+
346
+ self.apply(self._init_weights)
347
+
348
+ def _init_weights(self, module):
349
+ std = 0.02
350
+ if isinstance(module, (nn.Conv2d, nn.Linear)):
351
+ module.weight.data.normal_(mean=0.0, std=std)
352
+ if module.bias is not None:
353
+ module.bias.data.zero_()
354
+ elif isinstance(module, nn.GroupNorm):
355
+ if module.weight is not None:
356
+ module.weight.data.fill_(1.0)
357
+ if module.bias is not None:
358
+ module.bias.data.zero_()
359
+
360
+ def gradient_checkpointing_enable(self):
361
+ self.encoder.grad_checkpointing = True
362
+ self.decoder.grad_checkpointing = True
363
+
364
+ @property
365
+ def dtype(self):
366
+ return self.encoder.conv_in.weight.dtype
367
+
368
+ @property
369
+ def device(self):
370
+ return self.encoder.conv_in.weight.device
371
+
372
+ @property
373
+ def trainable_params(self) -> float:
374
+ n_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
375
+ return LargeInt(n_params)
376
+
377
+ @property
378
+ def params_info(self) -> str:
379
+ encoder_params = str(LargeInt(sum(p.numel() for p in self.encoder.parameters())))
380
+ decoder_params = str(LargeInt(sum(p.numel() for p in self.decoder.parameters())))
381
+ table = [["encoder", encoder_params], ["decoder", decoder_params]]
382
+ return tabulate(table, headers=["Module", "Params"], tablefmt="grid")
383
+
384
+ def get_last_layer(self):
385
+ return self.decoder.conv_out.weight
386
+
387
+ def patchify(self, img: torch.Tensor):
388
+ """
389
+ img: (bsz, C, H, W)
390
+ x: (bsz, patch_size**2 * C, H / patch_size, W / patch_size)
391
+ """
392
+ bsz, c, h, w = img.shape
393
+ p = self.psz
394
+ h_, w_ = h // p, w // p
395
+
396
+ img = img.reshape(bsz, c, h_, p, w_, p)
397
+ img = torch.einsum("nchpwq->ncpqhw", img)
398
+ x = img.reshape(bsz, c * p**2, h_, w_)
399
+ return x
400
+
401
+ def unpatchify(self, x: torch.Tensor):
402
+ """
403
+ x: (bsz, patch_size**2 * C, H / patch_size, W / patch_size)
404
+ img: (bsz, C, H, W)
405
+ """
406
+ bsz = x.shape[0]
407
+ p = self.psz
408
+ c = self.config.latent_channels
409
+ h_, w_ = x.shape[2], x.shape[3]
410
+
411
+ x = x.reshape(bsz, c, p, p, h_, w_)
412
+ x = torch.einsum("ncpqhw->nchpwq", x)
413
+ img = x.reshape(bsz, c, h_ * p, w_ * p)
414
+ return img
415
+
416
+ def encode(self, x: torch.Tensor, return_dict: bool = True):
417
+ moments = self.encoder(x)
418
+
419
+ mean, logvar = torch.chunk(moments, 2, dim=1)
420
+ if self.psz is not None:
421
+ mean = self.patchify(mean)
422
+
423
+ if self.encoder_norm:
424
+ mean = layer_norm_2d(mean, mean.size()[-1:])
425
+
426
+ if self.psz is not None:
427
+ mean = self.unpatchify(mean)
428
+
429
+ moments = torch.cat([mean, logvar], dim=1).contiguous()
430
+
431
+ posterior = DiagonalGaussianDistribution(moments, deterministic=self.params.deterministic)
432
+
433
+ if not return_dict:
434
+ return (posterior,)
435
+
436
+ return AutoencoderKLOutput(latent_dist=posterior)
437
+
438
+ def decode(self, z: torch.Tensor, return_dict: bool = True):
439
+ dec = self.decoder(z)
440
+
441
+ if not return_dict:
442
+ return (dec,)
443
+
444
+ return DecoderOutput(sample=dec)
445
+
446
+ def forward(self, input, sample_posterior=True, noise_strength=0.0):
447
+ posterior = self.encode(input).latent_dist
448
+ z = posterior.sample() if sample_posterior else posterior.mode()
449
+ if noise_strength > 0.0:
450
+ p = torch.distributions.Uniform(0, noise_strength)
451
+ z = z + p.sample((z.shape[0],)).reshape(-1, 1, 1, 1).to(z.device) * randn_tensor(
452
+ z.shape, device=z.device, dtype=z.dtype
453
+ )
454
+ dec = self.decode(z).sample
455
+ return dec, posterior
456
+
457
+ @classmethod
458
+ def from_pretrained(cls, model_path, **kwargs):
459
+ config_path = os.path.join(model_path, "config.json")
460
+ ckpt_path = os.path.join(model_path, "checkpoint.pt")
461
+
462
+ if not os.path.isdir(model_path) or not os.path.isfile(config_path) or not os.path.isfile(ckpt_path):
463
+ raise ValueError(
464
+ f"Invalid model path: {model_path}. The path should contain both config.json and checkpoint.pt files."
465
+ )
466
+
467
+ state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True)
468
+
469
+ with open(config_path, "r") as f:
470
+ config: dict = json.load(f)
471
+ config.update(kwargs)
472
+ kwargs = config
473
+
474
+ # Filter out kwargs that are not in AutoEncoderParams
475
+ # This ensures we only pass parameters that the model can accept
476
+ valid_kwargs = {}
477
+ param_signature = inspect.signature(AutoEncoderParams.__init__).parameters
478
+ for key, value in kwargs.items():
479
+ if key in param_signature:
480
+ valid_kwargs[key] = value
481
+ else:
482
+ logger.info(f"Ignoring parameter '{key}' as it's not defined in AutoEncoderParams")
483
+
484
+ params = AutoEncoderParams(**valid_kwargs)
485
+ model = cls(params)
486
+ try:
487
+ msg = model.load_state_dict(state_dict, strict=False)
488
+ logger.info(f"Loaded state_dict from {ckpt_path}")
489
+ logger.info(f"Missing keys:\n{msg.missing_keys}")
490
+ logger.info(f"Unexpected keys:\n{msg.unexpected_keys}")
491
+ except Exception as e:
492
+ logger.error(e)
493
+ logger.warning(f"Failed to load state_dict from {ckpt_path}, using random initialization")
494
+ return model
vocab.json ADDED
The diff for this file is too large to render. See raw diff