|
import inspect |
|
import json |
|
import os |
|
from dataclasses import asdict, dataclass, field |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution |
|
from diffusers.models.modeling_outputs import AutoencoderKLOutput |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from einops import rearrange |
|
from loguru import logger |
|
from omegaconf import OmegaConf |
|
from torch import Tensor, nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
torch._dynamo.config.optimize_ddp = False |
|
|
|
|
|
@dataclass |
|
class AutoEncoderParams: |
|
resolution: int = 256 |
|
in_channels: int = 3 |
|
ch: int = 128 |
|
out_ch: int = 3 |
|
ch_mult: list[int] = field(default_factory=lambda: [1, 2, 4, 4]) |
|
num_res_blocks: int = 2 |
|
z_channels: int = 16 |
|
scaling_factor: float = 0.3611 |
|
shift_factor: float = 0.1159 |
|
deterministic: bool = False |
|
encoder_norm: bool = False |
|
psz: int | None = None |
|
|
|
|
|
def swish(x: Tensor) -> Tensor: |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
|
|
def attention(self, h_: Tensor) -> Tensor: |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
b, c, h, w = q.shape |
|
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous() |
|
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous() |
|
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous() |
|
h_ = nn.functional.scaled_dot_product_attention(q, k, v) |
|
|
|
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return x + self.proj_out(self.attention(x)) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, in_channels: int, out_channels: int): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
|
|
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True) |
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
if self.in_channels != self.out_channels: |
|
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, x): |
|
h = x |
|
h = self.norm1(h) |
|
h = swish(h) |
|
h = self.conv1(h) |
|
|
|
h = self.norm2(h) |
|
h = swish(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
|
|
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) |
|
|
|
def forward(self, x: Tensor): |
|
pad = (0, 1, 0, 1) |
|
x = nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, x: Tensor): |
|
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
resolution: int, |
|
in_channels: int, |
|
ch: int, |
|
ch_mult: list[int], |
|
num_res_blocks: int, |
|
z_channels: int, |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.in_ch_mult = in_ch_mult |
|
self.down = nn.ModuleList() |
|
block_in = self.ch |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for _ in range(self.num_res_blocks): |
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) |
|
block_in = block_out |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample(block_in) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
|
|
|
|
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) |
|
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
self.grad_checkpointing = False |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
block_fn = self.down[i_level].block[i_block] |
|
if self.grad_checkpointing: |
|
h = checkpoint(block_fn, hs[-1]) |
|
else: |
|
h = block_fn(hs[-1]) |
|
if len(self.down[i_level].attn) > 0: |
|
attn_fn = self.down[i_level].attn[i_block] |
|
if self.grad_checkpointing: |
|
h = checkpoint(attn_fn, h) |
|
else: |
|
h = attn_fn(h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions - 1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
h = self.norm_out(h) |
|
h = swish(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
ch: int, |
|
out_ch: int, |
|
ch_mult: list[int], |
|
num_res_blocks: int, |
|
in_channels: int, |
|
resolution: int, |
|
z_channels: int, |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.ffactor = 2 ** (self.num_resolutions - 1) |
|
|
|
|
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
curr_res = resolution // 2 ** (self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res) |
|
|
|
|
|
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for _ in range(self.num_res_blocks + 1): |
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) |
|
block_in = block_out |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) |
|
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) |
|
|
|
self.grad_checkpointing = False |
|
|
|
def forward(self, z: Tensor) -> Tensor: |
|
|
|
upscale_dtype = next(self.up.parameters()).dtype |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
|
|
h = h.to(upscale_dtype) |
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
block_fn = self.up[i_level].block[i_block] |
|
if self.grad_checkpointing: |
|
h = checkpoint(block_fn, h) |
|
else: |
|
h = block_fn(h) |
|
if len(self.up[i_level].attn) > 0: |
|
attn_fn = self.up[i_level].attn[i_block] |
|
if self.grad_checkpointing: |
|
h = checkpoint(attn_fn, h) |
|
else: |
|
h = attn_fn(h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = swish(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
def layer_norm_2d(input: torch.Tensor, normalized_shape: torch.Size, eps: float = 1e-6) -> torch.Tensor: |
|
|
|
_input = input.permute(0, 2, 3, 1) |
|
_input = F.layer_norm(_input, normalized_shape, None, None, eps) |
|
_input = _input.permute(0, 3, 1, 2) |
|
return _input |
|
|
|
|
|
class AutoencoderKL(nn.Module): |
|
def __init__(self, params: AutoEncoderParams): |
|
super().__init__() |
|
self.config = params |
|
self.config = OmegaConf.create(asdict(self.config)) |
|
self.config.latent_channels = params.z_channels |
|
self.config.block_out_channels = params.ch_mult |
|
|
|
self.params = params |
|
self.encoder = Encoder( |
|
resolution=params.resolution, |
|
in_channels=params.in_channels, |
|
ch=params.ch, |
|
ch_mult=params.ch_mult, |
|
num_res_blocks=params.num_res_blocks, |
|
z_channels=params.z_channels, |
|
) |
|
self.decoder = Decoder( |
|
resolution=params.resolution, |
|
in_channels=params.in_channels, |
|
ch=params.ch, |
|
out_ch=params.out_ch, |
|
ch_mult=params.ch_mult, |
|
num_res_blocks=params.num_res_blocks, |
|
z_channels=params.z_channels, |
|
) |
|
|
|
self.encoder_norm = params.encoder_norm |
|
self.psz = params.psz |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
std = 0.02 |
|
if isinstance(module, (nn.Conv2d, nn.Linear)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.GroupNorm): |
|
if module.weight is not None: |
|
module.weight.data.fill_(1.0) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def gradient_checkpointing_enable(self): |
|
self.encoder.grad_checkpointing = True |
|
self.decoder.grad_checkpointing = True |
|
|
|
@property |
|
def dtype(self): |
|
return self.encoder.conv_in.weight.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.encoder.conv_in.weight.device |
|
|
|
def patchify(self, img: torch.Tensor): |
|
""" |
|
img: (bsz, C, H, W) |
|
x: (bsz, patch_size**2 * C, H / patch_size, W / patch_size) |
|
""" |
|
bsz, c, h, w = img.shape |
|
p = self.psz |
|
h_, w_ = h // p, w // p |
|
|
|
img = img.reshape(bsz, c, h_, p, w_, p) |
|
img = torch.einsum("nchpwq->ncpqhw", img) |
|
x = img.reshape(bsz, c * p**2, h_, w_) |
|
return x |
|
|
|
def unpatchify(self, x: torch.Tensor): |
|
""" |
|
x: (bsz, patch_size**2 * C, H / patch_size, W / patch_size) |
|
img: (bsz, C, H, W) |
|
""" |
|
bsz = x.shape[0] |
|
p = self.psz |
|
c = self.config.latent_channels |
|
h_, w_ = x.shape[2], x.shape[3] |
|
|
|
x = x.reshape(bsz, c, p, p, h_, w_) |
|
x = torch.einsum("ncpqhw->nchpwq", x) |
|
img = x.reshape(bsz, c, h_ * p, w_ * p) |
|
return img |
|
|
|
def encode(self, x: torch.Tensor, return_dict: bool = True): |
|
moments = self.encoder(x) |
|
|
|
mean, logvar = torch.chunk(moments, 2, dim=1) |
|
if self.psz is not None: |
|
mean = self.patchify(mean) |
|
|
|
if self.encoder_norm: |
|
mean = layer_norm_2d(mean, mean.size()[-1:]) |
|
|
|
if self.psz is not None: |
|
mean = self.unpatchify(mean) |
|
|
|
moments = torch.cat([mean, logvar], dim=1).contiguous() |
|
|
|
posterior = DiagonalGaussianDistribution(moments, deterministic=self.params.deterministic) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def decode(self, z: torch.Tensor, return_dict: bool = True): |
|
dec = self.decoder(z) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
def forward(self, input, sample_posterior=True, noise_strength=0.0): |
|
posterior = self.encode(input).latent_dist |
|
z = posterior.sample() if sample_posterior else posterior.mode() |
|
if noise_strength > 0.0: |
|
p = torch.distributions.Uniform(0, noise_strength) |
|
z = z + p.sample((z.shape[0],)).reshape(-1, 1, 1, 1).to(z.device) * randn_tensor( |
|
z.shape, device=z.device, dtype=z.dtype |
|
) |
|
dec = self.decode(z).sample |
|
return dec, posterior |
|
|
|
@classmethod |
|
def from_pretrained(cls, model_path, **kwargs): |
|
config_path = os.path.join(model_path, "config.json") |
|
ckpt_path = os.path.join(model_path, "checkpoint.pt") |
|
|
|
if not os.path.isdir(model_path) or not os.path.isfile(config_path) or not os.path.isfile(ckpt_path): |
|
raise ValueError( |
|
f"Invalid model path: {model_path}. The path should contain both config.json and checkpoint.pt files." |
|
) |
|
|
|
state_dict = torch.load(ckpt_path, map_location="cpu") |
|
|
|
with open(config_path, "r") as f: |
|
config: dict = json.load(f) |
|
config.update(kwargs) |
|
kwargs = config |
|
|
|
|
|
|
|
valid_kwargs = {} |
|
param_signature = inspect.signature(AutoEncoderParams.__init__).parameters |
|
for key, value in kwargs.items(): |
|
if key in param_signature: |
|
valid_kwargs[key] = value |
|
else: |
|
logger.info(f"Ignoring parameter '{key}' as it's not defined in AutoEncoderParams") |
|
|
|
params = AutoEncoderParams(**valid_kwargs) |
|
model = cls(params) |
|
try: |
|
msg = model.load_state_dict(state_dict, strict=False) |
|
logger.info(f"Loaded state_dict from {ckpt_path}") |
|
logger.info(f"Missing keys:\n{msg.missing_keys}") |
|
logger.info(f"Unexpected keys:\n{msg.unexpected_keys}") |
|
except Exception as e: |
|
logger.error(e) |
|
logger.warning(f"Failed to load state_dict from {ckpt_path}, using random initialization") |
|
return model |
|
|