File size: 4,555 Bytes
6da8a9a
69690cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6da8a9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69690cd
 
 
 
 
 
6da8a9a
 
69690cd
 
 
 
 
 
 
 
 
 
 
 
6da8a9a
 
 
 
 
 
69690cd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from typing import Optional, Union

from transformers import Qwen2Config
from transformers.configuration_utils import PretrainedConfig


class StepAudio2EncoderConfig(PretrainedConfig):
    model_type = "step_audio_2_encoder"

    def __init__(
        self,
        n_mels=128,
        n_audio_ctx=1500,
        n_audio_state=512,
        n_audio_head=8,
        n_audio_layer=6,
        llm_dim=4096,
        kernel_size=3,
        adapter_stride=2,
        **kwargs,
    ):
        self.n_mels      = n_mels
        self.n_audio_ctx = n_audio_ctx
        self.n_audio_state = n_audio_state
        self.n_audio_head = n_audio_head
        self.n_audio_layer = n_audio_layer
        self.llm_dim     = llm_dim
        self.kernel_size = kernel_size
        self.adapter_stride = adapter_stride
        super().__init__(**kwargs)

class StepAudio2TextConfig(PretrainedConfig):
    model_type = "step_audio_2_text"

    def __init__(
        self,
        vocab_size=64012,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=48,
        num_attention_heads=32,
        num_attention_groups=4,
        num_key_value_heads=4,
        hidden_act="silu",
        max_position_embeddings=8192,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        rope_theta=1000000.0,
        rope_scaling=None,
        eos_token_id=None,
        **kwargs
    ):

        if eos_token_id is not None:
            if isinstance(eos_token_id, list):
                eos_token_id = list(set([151643, 151645, 151665] + eos_token_id))
            else:
                eos_token_id = [151643, 151645, 151665, eos_token_id]
        else:
            eos_token_id = [151643, 151645, 151665]

        super().__init__(
            eos_token_id=eos_token_id,
            **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_attention_groups = num_attention_groups
        self.num_key_value_heads = num_key_value_heads
        assert self.num_attention_groups == self.num_key_value_heads, "num_attention_groups must be equal to num_key_value_heads"
        self.hidden_act = hidden_act
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling

        self.text_config = Qwen2Config(
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            intermediate_size=intermediate_size,
            num_hidden_layers=num_hidden_layers,
            num_attention_heads=num_attention_heads,
            num_key_value_heads=num_key_value_heads,
            hidden_act=hidden_act,
            max_position_embeddings=max_position_embeddings,
            initializer_range=initializer_range,
            rms_norm_eps=rms_norm_eps,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            architectures=["Qwen2ForCausalLM"],
            torch_dtype=getattr(self, "torch_dtype", "bfloat16"),
        )

class StepAudio2Config(PretrainedConfig):
    model_type = "step_audio_2"
    architectures = ["StepAudio2ForCausalLM"]

    def __init__(
        self,
        audio_encoder_config :Optional[Union[dict, StepAudio2EncoderConfig]] = None,
        text_config: Optional[Union[dict, StepAudio2TextConfig]] = None,
        use_sliding_window: bool = False,
        sliding_window: Optional[int] = 2048,
        max_window_layers: Optional[int] = None,
        **kwargs
    ):
        kwargs.setdefault("use_sliding_window", use_sliding_window)
        kwargs.setdefault("sliding_window", sliding_window)
        if max_window_layers is None:
            max_window_layers = kwargs.get("num_hidden_layers", None)
        kwargs.setdefault("max_window_layers", max_window_layers)
        super().__init__(**kwargs)

        if text_config is None:
            text_config = StepAudio2TextConfig().text_config
        elif isinstance(text_config, dict):
            text_config = StepAudio2TextConfig(**text_config).text_config

        self.text_config = text_config

        if audio_encoder_config is None:
            self.audio_encoder_config = StepAudio2EncoderConfig()
        elif isinstance(audio_encoder_config, dict):
            self.audio_encoder_config = StepAudio2EncoderConfig(**audio_encoder_config)