buyun commited on
Commit
09aeb43
·
verified ·
1 Parent(s): 8599907

update config

Browse files
Files changed (3) hide show
  1. config.json +3 -3
  2. configuration_step1.py +41 -0
  3. modeling_step1.py +392 -0
config.json CHANGED
@@ -1,10 +1,10 @@
1
  {
2
  "architectures": [
3
- "StepAudioForCausalLM"
4
  ],
5
  "auto_map": {
6
- "AutoConfig": "configuration_stepaudio.StepAudioConfig",
7
- "AutoModelForCausalLM": "modeling_stepaudio.StepAudioForCausalLM"
8
  },
9
  "model_type": "step_audio",
10
  "bos_token_id": 1,
 
1
  {
2
  "architectures": [
3
+ "Step1ForCausalLM"
4
  ],
5
  "auto_map": {
6
+ "AutoConfig": "configuration_step1.Step1Config",
7
+ "AutoModelForCausalLM": "modeling_step1.Step1ForCausalLM"
8
  },
9
  "model_type": "step_audio",
10
  "bos_token_id": 1,
configuration_step1.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, List, Any, Dict
2
+ from transformers.configuration_utils import PretrainedConfig
3
+
4
+
5
+
6
+ class Step1Config(PretrainedConfig):
7
+ model_type = "step1"
8
+ keys_to_ignore_at_inference = ["past_key_values"]
9
+
10
+ def __init__(
11
+ self,
12
+ hidden_size: int = 5120,
13
+ intermediate_size: int = 13312,
14
+ num_attention_heads: int = 40,
15
+ num_attention_groups: int = 8,
16
+ num_hidden_layers: int = 48,
17
+ max_seq_len: int = 4096,
18
+ vocab_size: int = 65536,
19
+ rms_norm_eps: float = 1e-5,
20
+ bos_token_id: int = 1,
21
+ eos_token_id: int = 3,
22
+ pad_token_id: int = 0,
23
+ **kwargs,
24
+ ) -> None:
25
+ self.hidden_size = hidden_size
26
+ self.intermediate_size = intermediate_size
27
+ self.num_attention_heads = num_attention_heads
28
+ self.num_attention_groups = num_attention_groups
29
+ self.num_hidden_layers = num_hidden_layers
30
+ self.max_seq_len = max_seq_len
31
+ self.vocab_size = vocab_size
32
+ self.rms_norm_eps = rms_norm_eps
33
+ super().__init__(
34
+ bos_token_id=bos_token_id,
35
+ pad_token_id=pad_token_id,
36
+ eos_token_id=eos_token_id,
37
+ **kwargs
38
+ )
39
+
40
+
41
+ __all__ = ["Step1Config"]
modeling_step1.py ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Optional, Tuple, Union, List
3
+
4
+ import torch
5
+ import torch.utils.checkpoint
6
+ from torch import nn
7
+ from transformers.generation import GenerationMixin
8
+
9
+ from transformers.modeling_utils import PreTrainedModel
10
+ from transformers.utils import logging
11
+ from .configuration_step1 import Step1Config
12
+ from transformers.cache_utils import Cache, DynamicCache
13
+ from einops import rearrange
14
+ from transformers.modeling_outputs import (
15
+ BaseModelOutputWithPast,
16
+ CausalLMOutputWithPast,
17
+ )
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+
22
+ def build_alibi_cache(block_size, n_heads, dtype, device):
23
+ # get slopes
24
+ n = 2 ** math.floor(math.log2(n_heads)) # nearest 2**n to n_heads
25
+ m0 = 2.0 ** (-8.0 / n)
26
+ # 2^(-8/n), 2^(-8*2/n), 2^(-8*3/n), ...
27
+ slopes = torch.pow(m0, torch.arange(1, n + 1))
28
+ if n < n_heads:
29
+ m1 = 2.0 ** (-4.0 / n)
30
+ # 2^(-8/(2n)), 2^(-8*3/(2n)), 2^(-8*5/(2n)), ...
31
+ mm = torch.pow(m1, torch.arange(1, 1 + 2 * (n_heads - n), 2))
32
+ slopes = torch.cat([slopes, mm])
33
+ slopes = slopes.to(device)
34
+
35
+ tril = torch.tril(torch.ones(1, 1, block_size, block_size, device=device))
36
+
37
+ bias_rows = torch.arange(block_size, device=device).view(1, -1)
38
+ bias_cols = torch.arange(block_size, device=device).view(-1, 1)
39
+ bias = -torch.sqrt(bias_cols - bias_rows)
40
+ bias = bias.view(1, block_size, block_size) * slopes.view(-1, 1, 1)
41
+ bias = bias.masked_fill(tril == 0, float("-inf"))
42
+
43
+ return bias.type(dtype)
44
+
45
+
46
+ class StepRMSNorm(torch.nn.Module):
47
+ def __init__(self, hidden_size, eps=1e-5):
48
+ super().__init__()
49
+ self.weight = torch.nn.Parameter(torch.ones(hidden_size))
50
+ self.eps = eps
51
+
52
+ def forward(self, x: torch.Tensor):
53
+ var = x.float().pow(2).mean(-1, keepdim=True)
54
+ x = x * torch.rsqrt(var + self.eps).to(x.dtype)
55
+ x = x * self.weight
56
+ return x
57
+
58
+
59
+ class StepAttention(torch.nn.Module):
60
+ def __init__(self, hidden_size, num_heads, num_groups, layer_idx: int):
61
+ super().__init__()
62
+
63
+ self.num_heads = num_heads
64
+ self.num_groups = num_groups
65
+ self.hidden_size = hidden_size
66
+ self.head_dim = hidden_size // num_heads
67
+
68
+ self.q_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
69
+ self.k_proj = torch.nn.Linear(
70
+ hidden_size, num_groups * self.head_dim, bias=False
71
+ )
72
+ self.v_proj = torch.nn.Linear(
73
+ hidden_size, num_groups * self.head_dim, bias=False
74
+ )
75
+ self.o_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
76
+
77
+ self.layer_idx = layer_idx
78
+
79
+ def forward(
80
+ self,
81
+ x: torch.Tensor,
82
+ past_key_value: Optional[Cache] = None,
83
+ attention_mask: Optional[torch.Tensor] = None,
84
+ cache_position: Optional[torch.LongTensor] = None,
85
+ ):
86
+
87
+ q: torch.Tensor = self.q_proj(x)
88
+ k: torch.Tensor = self.k_proj(x)
89
+ v: torch.Tensor = self.v_proj(x)
90
+ if past_key_value is not None:
91
+ cache_kwargs = {"cache_position": cache_position}
92
+ k, v = past_key_value.update(k, v, self.layer_idx, cache_kwargs)
93
+
94
+ q = rearrange(q, "b s (h d) -> b s h d", h=self.num_heads)
95
+ k = rearrange(k, "b s (g d) -> b s g d", g=self.num_groups)
96
+ v = rearrange(v, "b s (g d) -> b s g d", g=self.num_groups)
97
+
98
+ k = k.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
99
+ v = v.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
100
+
101
+ attention_mask = build_alibi_cache(
102
+ k.size(1), self.num_heads, dtype=q.dtype, device=q.device
103
+ )[:, :, -q.size(1) :, :].contiguous()
104
+
105
+ q = q.transpose(1, 2)
106
+ k = k.transpose(1, 2)
107
+ v = v.transpose(1, 2)
108
+
109
+ o: torch.Tensor = torch.nn.functional.scaled_dot_product_attention(
110
+ q, k, v, attn_mask=attention_mask
111
+ )
112
+ o = o.transpose(1, 2).flatten(-2, -1)
113
+
114
+ o = self.o_proj(o)
115
+ return o
116
+
117
+
118
+ class StepMLP(torch.nn.Module):
119
+ def __init__(self, hidden_size, intermediate_size):
120
+ super().__init__()
121
+ self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
122
+ self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
123
+ self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
124
+
125
+ def forward(self, x):
126
+ gate = self.gate_proj(x)
127
+ up = self.up_proj(x)
128
+ x = torch.nn.functional.silu(gate) * up
129
+ x = self.down_proj(x)
130
+ return x
131
+
132
+
133
+ class StepLayer(torch.nn.Module):
134
+ def __init__(self, config: Step1Config, layer_idx: int):
135
+ super().__init__()
136
+ self.layer_idx = layer_idx
137
+ self.self_attn = StepAttention(
138
+ hidden_size=config.hidden_size,
139
+ num_heads=config.num_attention_heads,
140
+ num_groups=config.num_attention_groups,
141
+ layer_idx=layer_idx,
142
+ )
143
+ self.mlp = StepMLP(
144
+ hidden_size=config.hidden_size,
145
+ intermediate_size=config.intermediate_size,
146
+ )
147
+ self.input_layernorm = StepRMSNorm(
148
+ hidden_size=config.hidden_size, eps=config.rms_norm_eps
149
+ )
150
+ self.post_attention_layernorm = StepRMSNorm(
151
+ hidden_size=config.hidden_size, eps=config.rms_norm_eps
152
+ )
153
+
154
+ def forward(
155
+ self,
156
+ x,
157
+ attention_mask: Optional[torch.Tensor] = None,
158
+ past_key_value: Optional[Cache] = None,
159
+ cache_position: Optional[torch.LongTensor] = None,
160
+ ):
161
+ def f(x):
162
+ x = self.input_layernorm(x)
163
+ x = self.self_attn(x, past_key_value, attention_mask, cache_position)
164
+ return x
165
+
166
+ x = x + f(x)
167
+
168
+ def f(x):
169
+ x = self.post_attention_layernorm(x)
170
+ x = self.mlp(x)
171
+ return x
172
+
173
+ x = x + f(x)
174
+
175
+ return x
176
+
177
+
178
+ class StepPreTrainedModel(PreTrainedModel):
179
+ config_class = Step1Config
180
+ base_model_prefix = "model"
181
+ supports_gradient_checkpointing = True
182
+ _no_split_modules = ["StepLayer"]
183
+ _skip_keys_device_placement = ["past_key_values"]
184
+ _supports_cache_class = True
185
+ _supports_static_cache = True
186
+
187
+ def _init_weights(self, module):
188
+ std = self.config.initializer_range
189
+ if isinstance(module, nn.Linear):
190
+ module.weight.data.normal_(mean=0.0, std=std)
191
+ if module.bias is not None:
192
+ module.bias.data.zero_()
193
+ elif isinstance(module, nn.Embedding):
194
+ module.weight.data.normal_(mean=0.0, std=std)
195
+ if module.padding_idx is not None:
196
+ module.weight.data[module.padding_idx].zero_()
197
+
198
+
199
+ class Step1Model(StepPreTrainedModel):
200
+ """
201
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
202
+
203
+ Args:
204
+ config: Step1Config
205
+ """
206
+
207
+ def __init__(self, config: Step1Config):
208
+ super().__init__(config)
209
+ self.config = config
210
+ self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size)
211
+
212
+ self.layers = torch.nn.Sequential(
213
+ *[
214
+ StepLayer(config, layer_idx)
215
+ for layer_idx in range(config.num_hidden_layers)
216
+ ]
217
+ )
218
+
219
+ self.norm = StepRMSNorm(
220
+ hidden_size=config.hidden_size, eps=config.rms_norm_eps
221
+ )
222
+
223
+ # Initialize weights and apply final processing
224
+ self.post_init()
225
+
226
+ def get_input_embeddings(self):
227
+ return self.embed_tokens
228
+
229
+ def set_input_embeddings(self, value):
230
+ self.embed_tokens = value
231
+
232
+ def forward(
233
+ self,
234
+ input_ids: torch.LongTensor = None,
235
+ attention_mask: Optional[torch.Tensor] = None,
236
+ past_key_values: Optional[Cache] = None,
237
+ inputs_embeds: Optional[torch.FloatTensor] = None,
238
+ use_cache: Optional[bool] = None,
239
+ output_attentions: Optional[bool] = None,
240
+ output_hidden_states: Optional[bool] = None,
241
+ return_dict: Optional[bool] = None,
242
+ cache_position: Optional[torch.LongTensor] = None,
243
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
244
+ output_attentions = False
245
+ output_hidden_states = False
246
+
247
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
248
+ return_dict = (
249
+ return_dict if return_dict is not None else self.config.use_return_dict
250
+ )
251
+
252
+ if (input_ids is None) ^ (inputs_embeds is not None):
253
+ raise ValueError(
254
+ "You must specify exactly one of input_ids or inputs_embeds"
255
+ )
256
+
257
+ if inputs_embeds is None:
258
+ inputs_embeds = self.embed_tokens(input_ids)
259
+
260
+ if use_cache and past_key_values is None:
261
+ past_key_values = DynamicCache()
262
+
263
+ if cache_position is None:
264
+ past_seen_tokens = (
265
+ past_key_values.get_seq_length() if past_key_values is not None else 0
266
+ )
267
+ cache_position = torch.arange(
268
+ past_seen_tokens,
269
+ past_seen_tokens + inputs_embeds.shape[1],
270
+ device=inputs_embeds.device,
271
+ )
272
+
273
+ causal_mask = attention_mask
274
+
275
+ hidden_states = inputs_embeds
276
+
277
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
278
+ layer_outputs = decoder_layer(
279
+ hidden_states,
280
+ attention_mask=causal_mask,
281
+ past_key_value=past_key_values,
282
+ cache_position=cache_position,
283
+ )
284
+
285
+ hidden_states = layer_outputs
286
+
287
+ hidden_states = self.norm(hidden_states)
288
+
289
+ output = BaseModelOutputWithPast(
290
+ last_hidden_state=hidden_states,
291
+ past_key_values=past_key_values if use_cache else None,
292
+ hidden_states=hidden_states,
293
+ attentions=None,
294
+ )
295
+ return output if return_dict else output.to_tuple()
296
+
297
+
298
+ class Step1ForCausalLM(StepPreTrainedModel, GenerationMixin):
299
+ _tied_weights_keys = ["lm_head.weight"]
300
+
301
+ def __init__(self, config):
302
+ super().__init__(config)
303
+ self.model = Step1Model(config)
304
+ self.vocab_size = config.vocab_size
305
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
306
+
307
+ # Initialize weights and apply final processing
308
+ self.post_init()
309
+
310
+ def get_input_embeddings(self):
311
+ return self.model.embed_tokens
312
+
313
+ def set_input_embeddings(self, value):
314
+ self.model.embed_tokens = value
315
+
316
+ # def get_output_embeddings(self):
317
+ # return self.lm_head
318
+
319
+ # def set_output_embeddings(self, new_embeddings):
320
+ # self.lm_head = new_embeddings
321
+
322
+ def set_decoder(self, decoder):
323
+ self.model = decoder
324
+
325
+ def get_decoder(self):
326
+ return self.model
327
+
328
+ def forward(
329
+ self,
330
+ input_ids: torch.LongTensor = None,
331
+ attention_mask: Optional[torch.Tensor] = None,
332
+ position_ids: Optional[torch.LongTensor] = None,
333
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
334
+ inputs_embeds: Optional[torch.FloatTensor] = None,
335
+ labels: Optional[torch.LongTensor] = None,
336
+ use_cache: Optional[bool] = None,
337
+ output_attentions: Optional[bool] = None,
338
+ output_hidden_states: Optional[bool] = None,
339
+ return_dict: Optional[bool] = None,
340
+ cache_position: Optional[torch.LongTensor] = None,
341
+ num_logits_to_keep: int = 0,
342
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
343
+ # output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
344
+ output_attentions = False
345
+ output_hidden_states = False
346
+ # output_hidden_states = (
347
+ # output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
348
+ # )
349
+ return_dict = (
350
+ return_dict if return_dict is not None else self.config.use_return_dict
351
+ )
352
+
353
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
354
+ outputs = self.model(
355
+ input_ids=input_ids,
356
+ attention_mask=attention_mask,
357
+ past_key_values=past_key_values,
358
+ inputs_embeds=inputs_embeds,
359
+ use_cache=use_cache,
360
+ output_attentions=output_attentions,
361
+ output_hidden_states=output_hidden_states,
362
+ return_dict=return_dict,
363
+ cache_position=cache_position,
364
+ )
365
+
366
+ hidden_states = outputs[0]
367
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
368
+
369
+ logits = self.lm_head(hidden_states)
370
+
371
+ # logits = torch.matmul(hidden_states, lm_stat)
372
+
373
+ loss = None
374
+ if labels is not None:
375
+ loss = self.loss_function(
376
+ logits=logits,
377
+ labels=labels,
378
+ vocab_size=self.config.vocab_size,
379
+ **kwargs
380
+ )
381
+
382
+ if not return_dict:
383
+ output = (logits,) + outputs[1:]
384
+ return (loss,) + output if loss is not None else output
385
+
386
+ return CausalLMOutputWithPast(
387
+ loss=loss,
388
+ logits=logits,
389
+ past_key_values=outputs.past_key_values,
390
+ hidden_states=outputs.hidden_states,
391
+ attentions=outputs.attentions,
392
+ )