File size: 2,145 Bytes
0c754e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
tags:
- moe
- llm
- efficient-inference
pipeline_tag: text-generation
---
# TC-MoE: Augmenting Mixture of Experts with Ternary Expert Choice
## Model Description
TC-MoE is a novel Mixture-of-Experts (MoE) architecture that enhances traditional MoE models through expert space expansion. By applying the ternary set {-1, 0, 1} to each original expert, TC-MoE achieves:
- **9% reduction** in activated experts compared to Top-K routing
- **1.1% average performance gain** on language understanding benchmarks
- Flexible efficiency-effectiveness trade-off via reward mechanism
Key innovations:
- 🎯 **Ternary Expert Expansion**: Creates parameter-sharing expert variants (-1, 0, +1) without significant computational overhead
- ⚖️ **Adaptive Load Balancing**: Novel load balance loss for expert workload distribution
- 🎮 **Reward-Driven Routing**: Dynamic control of expert activation ratios
## Model Overview
- **Architecture**: Decoder-only transformer based on LLaMA
- **Pretraining Data**:
- RedPajama (100B tokens)
- **Model Size**:
- Base (681M/2.3B params)
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("stiger1000/TC-MoE")
tokenizer = AutoTokenizer.from_pretrained("stiger1000/TC-MoE")
inputs = tokenizer("The capital of France is", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
```
## Training Details
- **Optimizer**: AdamW (β₁=0.9, β₂=0.95)
- **Learning Rate**: 1e-4 with cosine decay
- **Batch Size**: 4M tokens
- **Loss Components**:
- Language Modeling Loss
- Load Balance Loss (α₁=0.01)
- Reward Loss (α₂=0.0)
## Citation
```bibtex
@inproceedings{yan2025tcmoe,
title={TC-MoE: Augmenting Mixture of Experts with Ternary Expert Choice},
author={Yan, Shen and Bin, Xingyan and Zhang, Sijun and Wang, Yisen and Lin, Zhouchen},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025}
}
```
📚 **Repository**: [GitHub](https://github.com/stiger1000/TC-MoE) |