File size: 1,379 Bytes
58d714f
 
1041199
 
 
 
 
 
 
 
 
 
58d714f
 
8099b7b
d70b01b
1041199
58d714f
9129a8a
95ce1c9
1041199
 
 
 
58d714f
486c012
58d714f
1041199
 
58d714f
1041199
 
58d714f
1041199
 
58d714f
1041199
 
486c012
1041199
 
 
 
 
58d714f
1041199
 
b11367b
 
e43bfdd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
library_name: transformers
tags:
- LoRA
license: apache-2.0
datasets:
- TIGER-Lab/MathInstruct
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
pipeline_tag: text-generation
---

![Komodo-Logo](Komodo-Logo.jpg)

Komodo is a Qwen 2.5-7B-Instruct-FineTuned model on TIGER-Lab/MathInstruct dataset to increase math performance of the base model.

This model is 4bit-quantized. You should import it 8bit if you want to use 7B parameters!

Suggested Usage:
```py
tokenizer = AutoTokenizer.from_pretrained("suayptalha/Komodo-7B-Instruct")
model = AutoModelForCausalLM.from_pretrained("suayptalha/Komodo-7B-Instruct")

example_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

inputs = tokenizer(
[
    example_prompt.format(
        "", #Your question here
        "", #Given input here
        "", #Output (for training)
    )
], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True)
tokenizer.batch_decode(outputs)
```

<a href="https://www.buymeacoffee.com/suayptalha" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>